Share:


Low impact development modeling to manage urban stormwater runoff: case study of Gorzów Wielkopolski

    Ireneusz Nowogoński   Affiliation

Abstract

Uncontrolled urbanization causes local flooding and deterioration of the water quality of receivers as a result of an increase in peak flow rate and increased washing out of contaminants from the catchment area. Currently, classic storage tanks are most often used. An alternative solution may be the use of Low Impact Development (LID), i.e. the preservation and restoration of natural landscape elements, minimizing the imperviousness of the catchment in the form of rain barrels, permeable walkways or bio-retention reservoirs. The comparison of both techniques was carried out using the Environmental Protection Agency Storm Water Management Model (EPA SWMM). The influence of several solutions on a selected urbanized catchment located in Gorzów Wielkopolski was tested.

Keyword : drainage, local flooding, low impact development (LID) practices, modelling, runoff, storm water, SWMM

How to Cite
Nowogoński, I. . (2020). Low impact development modeling to manage urban stormwater runoff: case study of Gorzów Wielkopolski. Journal of Environmental Engineering and Landscape Management, 28(3), 105-115. https://doi.org/10.3846/jeelm.2020.12670
Published in Issue
May 25, 2020
Abstract Views
1602
PDF Downloads
981
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahiableme, L. M., Engel, B. A., & Chaubey, I. (2013). Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 119, 151– 161. https://doi.org/10.1016/j.jenvman.2013.01.019

Ahmed, K., Chung, E. S., Song, J. Y., & Shahid, S. (2017). Effective design and planning specification of low impact development practices using Water Management Analysis Module (WMAM): Case of Malaysia. Water, 9(3). https://doi.org/10.3390/w9030173

Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., & Kapelan, K. (2018). Multi-criteria approach for selection of green and grey infrastructure to reduce flood risk and increase co-benefits. Water Resources Management, 32(7), 2505–2522. https://doi.org/10.1007/s11269-018-1943-3

Anim, D. O., Fletcher, T. D., Pasternack, G. B., Vietz, G. J., Duncan, H. P., & Burns, M. J. (2019). Can catchment-scale urban stormwater management measures benefit the stream hydraulic environment? Journal of Environmental Management, 233, 1–11. https://doi.org/10.1016/j.jenvman.2018.12.023

Bąk, J. (2018). Modelling the relationship between LID practices and the runoff of rainwater through the example of rainfall data for Krakow. E3S Web of Conferences, 45(8). https://doi.org/10.1051/e3sconf/20184500008

Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghig hatafshar, S., Jönsson, K., Larsson, R., Mobini, S., Mottaghi, M., Nilsson, J., Nordström, J., Pilesjö, P., Scholz, M., Sternudd, C., Sörensen, J., & Tussupova, K. (2019). Drivers of changing urban flood risk: A framework for action. Journal of Environmental Management 240, 47–56. https://doi.org/10.1016/j.jenvman.2019.03.094

Bogdanowicz, E., & Stachý, J. (1998). Maksymalne opady deszczu w Polsce. Charakterystyki projektowe. Warszawa: Instytut Meteorologii i Gospodarki Wodnej (in Polish).

Bosley, II, E. K. (2008). Hydrologic evaluation of low impact development using a continuous, spatially-distributed model (MA thesis). Virginia Polytechnic Institute and State University, Blacksburg. https://www.researchgate.net/publication/265824795_Hydrologic_Evaluation_of_Low_Impact_Development_Using_a_Continuous_Spatially-Distributed_Model_in_Memoriam

Chang, N. B., Lu, J. W., Chui, T. F. M., & Hartshorn, N. (2018). Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy, 70, 368–383. https://doi.org/10.1016/j.landusepol.2017.11.024

Coffman, L. (1999). Low-impact development design strategies: An integrated design approach (Report EPA 841-B-00-003). U.S. Environmental Protection Agency, Washington, D.C., USA. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20004JX4.txt

Damodaram, C., Giacomoni, M. H., Khedun, C. P., Holmes, H., Ryan, A., Saour, Q., & Zechman, E. M. (2010). Simulation of combined best management practices and low impact development for sustainable stormwater management. Journal of the American Water Resources Association, 46(5), 907–918. https://doi.org/10.1111/j.1752-1688.2010.00462.x

Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development – A review. Science of the Environment, 607–608, 413–432. https://doi.org/10.1016/j.scitotenv.2017.06.254

Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of Hydrology, 562, 564–576. https://doi.org/10.1016/j.jhydrol.2018.04.068

Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J. L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314

Goulden, S., Portman, M. E., Carmon, N., & Alon-Mozes, T. (2018). From conventional drainage to sustainable stormwater management: Beyond the technical challenges. Journal of Environmental Management, 219, 37–45. https://doi.org/10.1016/j.jenvman.2018.04.066

Granata, F., Gargano, R., & de Marinis, G. (2016). Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA’s storm water management model. Water, 8(3), 69. https://doi.org/10.3390/w8030069

Huang, C. L., Hsu, N. S., Liu, H. J., & Huang, Y. H. (2018). Optimization of low impact development layout designs for megacity flood mitigation. Journal of Hydrology, 564, 542–558. https://doi.org/10.1016/j.jhydrol.2018.07.044

Jia, H., Lu, Y., Yu, S. L., & Chen, Y. (2012). Planning of LID– BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 84, 112–119. https://doi.org/10.1016/j.seppur.2011.04.026

Joksimovic, D., & Alam, Z. (2014). Cost efficiency of Low Impact Development (LID) stormwater management practices. Procedia Engineering, 89, 734–741. https://doi.org/10.1016/j.proeng.2014.11.501

Kim, S., & An, K. (2017). Exploring psychological and aesthetic approaches of bio-retention facilities in the urban open space. Sustainability, 9(11). https://doi.org/10.3390/su9112067

Kong, F., Ban, Y., Yin, H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 95, 132–142. https://doi.org/10.1016/j.envsoft.2017.06.021

Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H., & Koivusalo, H. (2014). Spatial resolution considerations for urban hydrological modelling. Journal of Hydrology, 512, 482–497. https://doi.org/10.1016/j.jhydrol.2014.03.013

La Rosa, D., & Pappalardo, V. (2019). Planning for spatial equity – A performance based approach for sustainable urban drainage systems. Sustainable Cities and Society, 53, 101885. https://doi.org/10.1016/j.scs.2019.101885

Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., & Guan, Y. (2019). Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. Journal of Environmental Management, 231, 10–20. https://doi.org/10.1016/j.jenvman.2018.10.024

Liu, Y., Bralts, V. F., & Engel, B. A. (2015). Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Science of the Total Environment, 511, 298–308. https://doi.org/10.1016/j.scitotenv.2014.12.077

Mahauta, H., & Andrieub, H. (2019). Relative influence of urban-development strategies and water management on mixed (separated and combined) sewer overflows in the context of climate change and population growth: A case study in Nantes. Sustainable Cities and Society, 44, 171–182. https://doi.org/10.1016/j.scs.2018.09.012

Mao, X., Jia, H., & Yu, S. L. (2017). Assessing the ecological benefits of aggregate LID-BMPs through modelling. Ecological Modelling, 353, 139–149. https://doi.org/10.1016/j.ecolmodel.2016.10.018

Mrowiec, M., & Sobczyk, M. (2014). Ecological management of rainwaters – green roofs. Water-Environment-Rural Areas, 48, 53–61.

Nowogoński, I., & Ogiołda, E. (2018). Verification of the combined sewage system simulation model based on the example of the city of Głogów. E3S Web of Conferences, 45, 00058. https://doi.org/10.1051/e3sconf/20184500058

Palla, A., & Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology, 528, 361–368. https://doi.org/10.1016/j.jhydrol.2015.06.050

Pappalardo, V., & La Rosa, D. (2020). Policies for sustainable drain age systems in urban contexts within performancebased planning approaches. Sustainable Cities and Society, 52, 101830. https://doi.org/10.1016/j.scs.2019.101830

Rossman, L. A. (2010). Modeling Low Impact Development alternatives with SWMM. Journal of Water Management Modeling, 18, 167–182. https://doi.org/10.14796/JWMM.R236-11

Rossman, L. A. (2015). Storm water management model user’s manual version 5.1 (EPA/600/R-14/413b). US EPA National Risk Management Research Laboratory, Cincinnati, Ohio, USA.

Seo, M., Jaber, F., Srinivasan, R., & Jeong, J. (2017). Evaluating the impact of Low Impact Development (LID) practices on water quantity and quality under different development designs using SWAT. Water, 9(3), 193. https://doi.org/10.3390/w9030193

Shafique, M., Kim, R., & Kyung-Ho, K. (2018). Green roof for stormwater management in a highly urbanized area: The case of Seoul, Korea. Sustainability, 10(3), 584. https://doi.org/10.3390/su10030584

Shuttleworth, A. B., Nnadi, E. O., Mbanaso, F. U., Coupe, S. J., Voeten, J. G. W. F., & Newman, A. P. (2017). Applications of SuDS techniques in harvesting stormwater for landscape irrigation purposes: Issues and considerations. In Current Perspective on irrigation and drainage. IntechOpen. https://doi.org/10.5772/67041

Srishantha, U., & Rathnayake, U. (2017). Sustainable urban drainage systems (SUDS) – what it is and where do we stand today? Engineering and Applied Science Research, 44(4), 235–241. https://doi.org/10.14456/easr.2017.36

Woods-Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Scott, T., Ashley, R., & Kellagher, R. (2015). The SuDS manual. CIRIA, Griffin Court, 15 Long Lane. London.

Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An integrated assessment of urban flooding mitigation strategies for robust decision making. Environmental Modelling & Software, 95, 143–155. https://doi.org/10.1016/j.envsoft.2017.06.027

Zhu, Z., & Chen, X. (2017). Evaluating the effects of low impact development practices on urban flooding under different rainfall intensities. Water, 9(7), 548. https://doi.org/10.3390/w9070548

Zhu, Z., Chen, Z., Chen, X., & Yu, G. (2019). An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. Journal of Environmental Management, 231, 504–514. https://doi.org/10.1016/j.jenvman.2018.10.046

Zimmer, C. A., Heathcote, I. W., Whiteley, H. R., & Schroeter, H. (2007). Low Impact Development practices for stormwater implications for urban hydrology. Canadian Water Resources Journal, 32(3), 193–212. https://doi.org/10.4296/cwrj3203193