Influence of the matrix of aqueous solutions on the adsorption of endocrine disruptors by fullerene C60
Abstract
In this work, fullerene (C60) was selected as a model carbon nanomaterial, humic acid (HA) as the model natural organic matter and bisphenol A (BPA), as a moderate hydrophobic organic contaminant. The effects of ionic strength, concentration of organic matter and of the pH over the adsorption of BPA on C60 were studied, as well as the competition between the BPA and the HA at the active sites of the C60. A possible adsorption mechanism was proposed as well as an attempt to study the sorption process in real environmental samples with characteristics alike to the optimum ones found in the synthetic samples studied.
Keyword : water pollution, environmental monitoring, fullerene C60, adsorption isotherms, endocrine disruptors
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Brant, J. A., Labille, J., Bottero, J., & Wiesner, M. R. (2006). Characterization of the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 22, 3878-3885. https://doi.org/10.1021/la053293o
Brant, J., Lecoanet, H., Hotze, M., & Wiesner, M. (2005). Comparison of electrokinetic properties of colloidal fullerene (nC60) formed using two procedures. Environmental Science and Technology, 39, 6343-6351. https://doi.org/10.1021/es050090d
Chen, K. L., & Elimelech, M. (2006). Aggregation of and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22(26), 10994-11001. https://doi.org/10.1021/la062072v
Chen, K. L., & Elimelech, M. (2007). Influence of humic acid on the aggregation kinetics of fullerene C60 nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloids Interface Science, 309, 126-134. https://doi.org/10.1016/j.jcis.2007.01.074
Deguchi, S., Alargova, R. G., & Tsujii, K. (2001). Stable dispersions of fullerenes C60 in water. Preparation and characterization. Langmuir, 17, 6013-6017. https://doi.org/10.1021/la010651o
Duncan, K. L., Jinscheck, J. R., Vikesland, J. P. (2008). C60 colloid formation in aqueous systems: effects of preparation method on size, structure and surface charge. Environmental Science and Technology, 42(1), 173-178. https://doi.org/10.1021/es071248s
Gotovac, S., Hattori, Y., Nogoguchi, D., Miyamoto, J., Kanamaru, M., Utsumi, S., Kanoh, H., & Kaneko, K. (2006). Journal of Physical Chemistry B, 110, 16219-16224. https://doi.org/10.1021/jp0611830
Gu, P., Zhang, S., Li, X., Wang, X., Wen, T., Jehan, R., Alsaedi, A., Hayat, T., & Wang, X. (2018). Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 240, 493-505. https://doi.org/10.1016/j.envpol.2018.04.136
Hou, L., Fortner, J. D., Wang, X., Zhang, C., Wang, L., & Chen, W. (2017). Complex interplay between formation routes and natural organic matter modification controls capabilities of C60 nanoparticles (nC60) to accumulate organic contaminants. Journal of Environmental Sciences, 51, 315-323. https://doi.org/10.1016/j.jes.2016.07.009
Hu, X., Liu, J., Mayer, P., & Jiang, G. (2008). Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Nanomaterials in the environment, 27, 1868-1874. https://doi.org/10.1897/08-009.1
Huffer, T., Kah, M., Hofman, T., & Schmidt, T. C. (2013). How redox conditions and irradiation affect sorption of PAHs by dispersed fullerene. Environmental Science and Technology, 47(13), 6935-6942. https://doi.org/10.1021/es303620c
Huffer, T., Sun, H., Kubicki, J. D., Hofmann, T., & Kah, M. (2017). Interactions between aromatic hydrocarbons and functionalized C60 fullerenes – insights from experimental data and molecular modelling. Environmental science Nano, 4, 1045-1053. https://doi.org/10.1039/C7EN00139H
Hyung, H., & Kim, J. H. (2009). Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Research, 43(9), 2463-2470. https://doi.org/10.1016/j.watres.2009.03.011
Ion, A. C., Bley, S., Ion, I., Culetu, A., Zahov, S., Hollert, H., & Seiler, T. B. (2013). Investigation of the contaminant sorption of treated Romanian soils using “batch” and biological toxicity assays. Catena, 101, 205-211. https://doi.org/10.1016/j.catena.2012.09.009
Ion, A. C., Ion, I., & Culetu, A. (2011). Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions. Materials Science and Engineering Series B: Solid State Materials for Advanced Technology, 176(6), 504-509. https://doi.org/10.1016/j.mseb.2010.07.021
Ji, L., Chen, W., Xu, Z., & Zheng, S. (2013). Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solutions. Journal of Environmental Quality, 42(1), 191-198. https://doi.org/10.2134/jeq2012.0172
Kah, M., Zhang, X. R., & Hofmann, T. (2014). Sorption behavior of carbon nanotubes: changes induced by functionalization, sonication and natural organic matter. Science of Total Environment, 497, 133-138. https://doi.org/10.1016/j.scitotenv.2014.07.112
Keiluweit, M., & Kleber, M. (2009). Molecular level interactions in soils and sediments: the role of aromatic pi-systems. Environmental Science and Technology, 43(10), 3421-3429. https://doi.org/10.1021/es8033044
Li, X., Pignatello, J. J., Wang, Y., & Xing, B. (2013). New insight into adsorption mechanism of ionisable compounds on carbon nanotubes. Environmental Science & Technology, 47(15), 8334-8341.
Li, X., Liu, Y., Zhang, C., Wen, T., Wang, X. (2018). Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chemical Engineering Journal, 336, 241-252. https://doi.org/10.1016/j.cej.2017.11.188
Mauter, M. S., & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science and Technology, 42(16), 5843-5859. https://doi.org/10.1021/es8006904
Liu, X., Zhang, H., Ma, Y., Wu, X., Meng, I., Guo, Y., Yu, G., & Liu, Y. (2013). Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. Journal of Materials Chemistry A, 1, 1875-1884. https://doi.org/10.1039/C2TA00173J
Pahigian, J. M., & Zuo, Y. (2018). Occurrence, endocrine related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities. A review. Chemosphere, 207, 469-480. https://doi.org/10.1016/j.chemosphere.2018.05.117
Prossnitz, E. R., & Barton, M. (2014). Estrogen biology: new insights into GPER function and clinical opportunities. Molecular and Cellular Endocrinology, 389(1-2), 71-83. https://doi.org/10.1016/j.mce.2014.02.002
Radu, E., Stoica, R., Oprescu, E., Bolocan, I., Ion, I., & Ion, A. C. (2016). Validation of a RP-HPLC method for the determination of bisphenol A at low levels in natural mineral water. Revista de Chimie, 67(2), 230-240.
Senin, R. M., Ion, I., Oprea O., Vasile, B., Stoica, R., Ganea, R., & Ion, A. C. (2018). Sorption of bisphenol A (BPA) in aqueous solutions on fullerene C60. Revista de Chimie (Bucharest), 69(6), 1309-1314.
Song, S., Huang, S., Zhang, R., Chen, Z., Wen, T., Wang, S., Hayat, T., Alsaedi, A., & Wang, X. (2017). Simultaneous removal of U(VI) and humic acid on defective TiO investigated by batch and spectroscopy techniques. Chemical Engineering Journal, 325, 576-587. https://doi.org/10.1016/j.cej.2017.05.125
Su-Zhen, H., Holger, M., & Chen-Xu, W. (2014). Aggregation of fullerene (C60) nanoparticle: A molecular study. Chinese Physics B, 23(4), 048201-1-048201-4.
Wang, L., Hou, L., Wang, X., & Chen, W. (2014). Effects of the preparation method and humic acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles. Environmental Science Process Impacts, 16, 1282-1289. https://doi.org/10.1039/c3em00577a
Yang, K., & Xing, B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Review, 110, 5989-6008. https://doi.org/10.1021/cr100059s
Yang, Q., Li, X., Chen, G., Zhang, J., & Xing, B. (2016). Effect of humic acid on sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: mechanistic study. RSC Advanced, 6, 15184-15191. https://doi.org/10.1039/C5RA26913J
Yang, Y., Nakada, N., Nakajima, R., Yasojima, M., Wang, C., & Tanaka, H. (2013). pH, ionic strength and dissolved organic matter alter aggregation of fullerene C60 nanoparticles suspensions in wastewater. Journal of Hazardous Materials, 244-245, 582-587. https://doi.org/10.1016/j.jhazmat.2012.10.056
Zhang, C., Liu, Y., Li, X., Chen, X., & Wang, X. (2018). Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: Batch, EXAFS and theoretical calculations. Chemical Engineering Journal, 346, 406-415. https://doi.org/10.1016/j.cej.2018.03.186
Zhang, L., Zhang, Y., Lin, X., Yang, K., & Lin, D. (2014). The role of humic acid in stabilizing fullerene (C60) in suspensions. Applied Physics and Engineering, 15(8), 634-642. https://doi.org/10.1631/jzus.A1400115
Zhang, S., Shao, T., Bekaroglu, S. S. K., & Karanfil, T. (2010). Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry. Water Resources, 44(6), 2067-2074.
Zhao, J., Wang, Z., Ghosh, S., & Xing, B. (2014). Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique. Environmental Pollution, 184, 145-153. https://doi.org/10.1016/j.envpol.2013.08.028
Zhou, L., Zhu, D., Zhang, S., & Pan, B. (2015). A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. Journal of Environmental Sciences, 29, 1-10. https://doi.org/10.1016/j.jes.2014.05.054
Zhou, M., Luo, L. L., Zhong, S. X., Yang, J. Y., & Chen, J. R. (2014). Progress of graphene-based composites for adsorption of pollutants in wastewater. Applied Mechanics and Materials, 455, 7-10. https://doi.org/10.4028/www.scientific.net/AMM.455.7
Zou, M. Y., Zhang, J. D., Chen, J. W., & Li, X. H. (2012). Simulating adsorption of organic pollutants on finite single walled carbon nanotubes in water. Environmental Science and Technology, 46(16), 8887-8894. https://doi.org/10.1021/es301370f