Share:


Geochemical characterization of banana, buriti palm, jute and coir fibres for use as biogeotextiles for erosion control

    Charles Izuchukwu Egbujuo Affiliation
    ; Michael A. Fullen Affiliation
    ; Antonio J. T. Guerra Affiliation
    ; Alexander Iheanyi Opara Affiliation

Abstract

Geochemical analysis of selected plant fibres used as geotextiles for erosion control was conducted to evaluate their geochemical composition and to determine the elements that could potentially be nutrients for plants or cause heavy metal contamination in soils. Analysis of the samples was performed using X-ray Diffraction and X-ray Fluorescence spectrometry. Results revealed that potassium concentrations varied from 3.63% in jute-mat (India)-50.73% in banana-leaf (São Romão, Brazil), with a mean of 27.17%. Similarly, calcium concentrations varied from 0.09% in banana-leaf (São Romão) –37.0% in banana-leaf/stem (Oleo, Brazil). Iron concentrations varied from 0.15% in banana-leaf/stem samples (Oleo) –4.47% in jute-cloth (India). Since banana-leaf/stem had the highest concentration of macro-nutrients, it is therefore proposed that banana-leaf has the highest potential for adding nutrients to the soil system when biodegraded. In addition, heavy metal analysis of the samples revealed that none of the fibres have high concentrations that may contaminate the soil upon decomposition.

Keyword : landscape management, biogeotextiles, geochemical characterization, X-ray fluorescence spectrometry, macro-nutrients, micro-nutrients, heavy metals

How to Cite
Egbujuo, C. I., Fullen, M. A., Guerra, A. J. T., & Opara, A. I. (2018). Geochemical characterization of banana, buriti palm, jute and coir fibres for use as biogeotextiles for erosion control. Journal of Environmental Engineering and Landscape Management, 26(3), 202-215. https://doi.org/10.3846/16486897.2017.1418365
Published in Issue
Oct 9, 2018
Abstract Views
1150
PDF Downloads
779
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adeitun, A. 2011. Evaluation of geochemical inputs from potential geotextile plant fibres (banana-leaf, banana-stem, banana-leaf stem, Miscanthus giganteus and Buriti palm): MSc thesis in Environmental Technology. The University of Wolverhampton. 70 p.

Álvarez-Mozos, J.; Abad, E.; Giménez, R.; Campo, M. A.; Goñi, M.; Arive, M.; Casalí, J.; Díez, J.; Diego, L. 2014. Evaluation of erosion control geotextiles on steep slopes, Part 1: Effects of runoff and soil loss, Catena 118: 168–178. https://doi.org/10.1016/j.catena.2013.05.018

Bakker, R. R.; Elbersen, H. W. 2005. Managing ash content and quality in herbaceous biomass: an analysis from plant to product, in 14th European Biomass Conference, 2005, Paris, France, 210–213.

Bhattacharyya, R.; Fullen, M. A.; Booth, C. A. 2011b. Using palm-mat geotextiles on an arable soil for water erosion control in the United Kingdom, Earth Surface Processes and Landforms 36: 933–945. https://doi.org/10.1002/esp.2123

Bhattacharyya, R.; Fullen, M. A.; Booth, C. A.; Kertész, A.; Tóth, A.; Szalai, Z.; Jakab, G.; Kozma, K.; Jankauskas, B.; Jankauskiene, G.; Bühmann, C.; Paterson, G.; Mulibana, E.; Nell, J. P.; Van der Merwe, G. M. E.; Guerra, A. J. T.; Mendonça, J. K. S.; Guerra, T. T.; Sathler, R.; Bezerra, J. F. R.; Peres, S. M.; Yi, Z.; Li, Y. M.; Panomtaranichagul, M.; Peukrai, S.; Thu, D. C.; Cuong, T. H.; Toan, T. T. 2011a. Effectiveness of biological geotextiles for soil and water conservation in different agro-environments, Land Degradation and Development 22: 495–504. https://doi.org/10.1002/ldr.1097

Bhattacharyya, R.; Fullen, M. A.; Booth, C. A.; Smets, T.; Poesen, J.; Black, A. 2011c. Using palm-mat geotextiles for soil conservation: Effects on soil properties, Catena 84: 99–107. https://doi.org/10.1016/j.catena.2010.10.003

Bhattacharyya, R.; Fullen, M. A.; Davies, K.; Booth, C. A. 2010a. Use of palm-mat geotextiles for rain splash erosion control, Geomorphology 119: 52–61. https://doi.org/10.1016/j.geomorph.2010.02.018

Bhattacharyya, R.; Smets, T.; Fullen, M. A.; Poesen, J.; Booth, C. A. 2010b. Effectiveness of geotextiles in reducing runoff and soil loss: a synthesis, Catena 81: 184–195. https://doi.org/10.1016/j.catena.2010.03.003

Carvalho, J. L. N.; Raucci, G. S.; Cerri, C. E. P.; Bernoux, M.; Feigl, B. J.; Wruck, F. J.; Cerri, C. C. 2010. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil, Soil & Till Research 110: 175–186. https://doi.org/10.1016/j.still.2010.07.011

Chen, S. C.; Chang, K. T.; Wang, S. H.; Lin, J. Y. 2011. The efficiency of artificial materials used for erosion control on steep slopes, Environmental Earth Sciences 62: 197–206. https://doi.org/10.1007/s12665-010-0514-6

Davies, K. 2000. An evaluation of the effectiveness of palm-mat geotextiles on the conservation of loamy soils of the Bridgenorth series: BSc Dissertation (unpublished). The University of Wolverhampton, UK, 18–20.

FAO. 2017. Dimensions of need- an atlas of food and agriculture corporate document repository; a report of the food and agricultural organization [online], [cited 28 September 2017]. Available from Internet: www.fao.org/documents/en/detail/20536

Fullen, M. A.; Booth, C. A.; Panomtaranichagul, M.; Subedi, M.; Li, Y. M. 2011a. Agro-environmental lessons from the ‘Sustainable Highland Agriculture in South-East Asia’ (SHASEA) Project, Journal of Environmental Engineering and Landscape Management 19(1): 101–113. https://doi.org/10.3846/16486897.2011.557476

Fullen, M. A.; Subedi, M.; Booth, C. A.; Sarsby, R. W.; Davies, K.; Bhattacharyya, R.; Kugan, R.; Luckhurst, D. A.; Chan, K.; Black, A. W.; Townrow, D.; James, T.; Poesen, J.; Smets, T.; Kertész, A.; Tóth, A.; Szalai, Z.; Jakab, G., Jankauskas, B.; Jankauskiene, G.; Bühmann, C. B. U.; Paterson, G.; Mulibana, E.; Nell, J. P.; Van der Merwe, G. M. E.; Guerra, A. J. T.; Mendonça, J. K. S.; Guerra, T. T.; Sathler, R.; Bezerra, A. J. T.; Peres, S. M.; Zheng, Y.; Li, Y. M.; Li, T.; Panomtaranichagul, M.; Peukrai, S.; Thu, D. C.; Cuong, T. H.; Toan, T. T.; Jonsyn-Ellis, F.; Sylva, J. Z.; Cole, A.; Mulholland, B.; Dearlove, M.; Corkill, C.; Tomlinson, P. 2011b. Utilizing biological geotextiles: Introduction to the BORASSUS Project and global perspectives, Land Degradation and Development 22: 453–462. https://doi.org/10.1002/ldr.1105

Guerra, A. J. T.; Bezerra, J. F. R.; Lima, L. D. M.; Mendonça, J. K. S.; Guerra, T. T.; Buhmann, C.; Paterson, D. G.; Pienaar, G.; Nell, J. P.; Mulibana, N. E.; Van Deventer, P. W.; Fullen, M. A. 2010. Land rehabilitation with the use of biological geotextiles in two different countries, Sociedade and Natureza, Uberlandia 22(3): 413–446. https://doi.org/10.1590/S1982-45132010000300002

Guerra, A. J. T.; Fullen, M. A.; Jorge, M. C. O.; Bezerra, J. F. R.; Shokr, M. S. 2017. Slope processes, mass movement and soil erosion: a review, Pedosphere 27: 27–41. https://doi.org/10.1016/S1002-0160(17)60294-7

Guerra, A. J. T.; Fullen, M. A.; Jorge, M. C. O.; Alexandre, S. T. 2014. Soil erosion and conservation in Brazil, Anuário do Instituto de Geociências (UFRJ) 37: 81–91. https://doi.org/10.11137/2014_1_81_91

Guerra, A. J. T.; Bezerra, J. F. R.; Fullen, M. A.; Mendonça, J. K. S.; Jorge, M. C. O. 2015. The effects of biological geotextiles on gully stabilization in São Luís, Brazil, Natural Hazards 75: 2625–2636. https://doi.org/10.1007/s11069-014-1449-0

Jadia, C. D.; Fulekar, M. H. 2009. Phytoremediation of heavy metals: recent techniques, African Journal of Biotechnology 8(6): 921–928.

Jakab, G.; Szalai, Z.; Kertész, Á.; Tóth, A.; Madarász, B.; Szabó, S. 2012. Biological geotextiles against soil degradation under subhumid climate: a case study, Carpathathian Journal of Earth and Environmental Sciences 7(2): 125–134.

Jankauskas, B.; Jankauskiene, G.; Fullen, M. A. 2012. A field experiment on the use of biogeotextiles for the conservation of sand-dunes of the Baltic coast in Lithuania, Hungarian Geographical Bulletin 61(1): 3–17.

Jarašiūnas, G.; Kinderienė, I. 2016. Impact of agro-environmental systems on soil erosion processes and soil properties on hilly landscape in Western Lithuania, Journal of Environmental Engineering and Landscape Management 24(1): 60–69. https://doi.org/10.3846/16486897.2015.1054289

Jorge, M. C. O.; Guerra, A. J. T.; Fullen, M. A. 2016. Geotourism, geodiversity and geo-conservation in Ubatuba Municipality, São Paulo State, Brazil, Geography Review 29: 23–29.

Kaniu, M. I.; Angeyo, K. H.; Mwala, A. K.; Mangala, M. J. 2012. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy, dispersive X-ray fluorescence and scattering spectrometry, Analytica Chimica Acta 729: 21–25. https://doi.org/10.1016/j.aca.2012.04.007

Kertész, A.; Szalai, Z.; Jakab, G.; Tóth, A.; Szabo, S.; Madarasz, B.; Janskauskas, B.; Guerra, A.; Bezerra, J. F. R.; Panomtaranichagul, M.; Chau Thu, D.; Zheng, Y. 2011. Biological geotextiles as tools for soil moisture conservation, Land Degradation and Development 22: 472–479. https://doi.org/10.1002/ldr.1098

Marschner, H. 1993. Mineral nutrition of higher plants. 2nd ed. London: Academic Press.

Methacanon, P.; Weerawatsophon, U.; Sumransin, N.; Prahsarn, C.; Bergado, D. T. 2010. Properties and potential application of the selected natural fibers as limited life geotextiles, Carbohydrate Polymers 82(4): 1090–1096. https://doi.org/10.1016/j.carbpol.2010.06.036

Paterson, D. G.; Bühmann, C.; Pienaar, G. M. E.; Barnard, R. O. 2011. Beneficial effect of palm geotextiles on interrill erosion in South African soils and mine dam tailings: a rainfall simulator study, South African Journal of Plant & Soil 28: 181–189.

Rickson, R. J. 2006. Controlling sediment at source: an evaluation of erosion control geotextiles, Earth Surface Processes and Landforms 31: 550–560. https://doi.org/10.1002/esp.1368

Saha, P.; Roy, D.; Manna, S.; Adhikari, B.; Sen, R.; Roy, S. 2012. Durability of transesterified jute geotextiles, Geotextile and Geomembranes 35: 69–75. https://doi.org/10.1016/j.geotexmem.2012.07.003

Saha, P.; Manna, S.; Roy, D.; Kim, M. Ch.; Chowdhury, S.; De, S.; Sen, R.; Adhikari, B.; Kim, J. K. 2014. Effect of photodegradation of lignocellulosic fibers transesterified with vegetable oil, Fibers and Polymers 15(11): 2345–2354. https://doi.org/10.1007/s12221-014-2345-7

Saha, P.; Roy, D.; Manna, S. 2015. Biodegradation of chemically modified lignocellulosic sisal fibers: study of the mechanism for enzymatic degradation of cellulose, e-Polymers 15(3): 185–194.

Shepherd, A. P. 2012. An agro-environmental analysis of Hanover Parish, Jamaica: Unpublished MSc Thesis in Environmental Management. The University of Wolverhampton, UK. 54 p.

Shirazi, S. M.; Adham, M. D. I.; Othman, F.; Zardari, N. H.; Ismail, Z. 2016. Runoff trend and potentiality in Melaka Tengah catchment of Malaysia using SCS-CN and statistical technique, Journal of Environmental Engineering and Landscape Management 24(4): 269–277. https://doi.org/10.3846/16486897.2016.1184153

Shokr, M. S.; El Baroudy, A. A.; Fullen, M. A.; El-Beshbeshy, T. R.; Ali, R. R.; Elhalim, A.; Guerra, A. J. T.; Jorge, M. C. O. 2016. Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt, Journal of Environmental Engineering and Landscape Management 24(3): 218–231. https://doi.org/10.3846/16486897.2016.1184152

Smets, T.; Poesen, J.; Bhattacharyya, R.; Fullen, M. A.; Subedi, M.; Booth, C. A.; Kertész, A.; Szalai, Z.; Tóth, A.; Jankauskas, B.; Jankauskiene, G.; Guerra, A.; Bezerra, J. F. R.; Zheng, Y.; Panomtaranichagul, M.; Bühmann, C.; Paterson, D. G. 2011. Evaluation of biological geotextiles for reducing runoff and soil loss under various environmental conditions using laboratory and field plot data, Land Degradation and Development 22: 480–494. https://doi.org/10.1002/ldr.1095

Stanjek, H.; Hausler, W. 2004. Basics of X-ray diffraction, Hyperfine Interactions 154(1): 107–119. https://doi.org/10.1023/B:HYPE.0000032028.60546.38

Sumi, S.; Unnikrishnan, N.; Mattew, L. 2016. Surface modification of coir fires for extended hydrophobicity and anti-microbial property for possile geotextile application, Journal of Natural Fibres 14(3): 335–345. https://doi.org/10.1080/15440478.2016.1209714

Tapobrata, S. 2017. Jute geotextiles and their applications in civil engineering (Developments in Geotechnical Engineering). Springer Science and Business Media. Singapore, 216.

Thomsen, V. B. E.; Schatzlein, D. 2002. X-ray fluorescence spectrometry, Advanced Materials and Processes 160(8): 41–43.

Vasarevičius, S.; Skripkiūnas, G.; Danila, V. 2016. Experimental research into leaching of metals from immobilized CIS solar module waste, Journal of Environmental Engineering and Landscape Management 24(4): 269–277. https://doi.org/10.3846/16486897.2016.1198262