Share:


Preparation method of NZVI-PVDF hybrid films with cation-exchange function for reductive transformation of Cr(VI)

    Xiangyu Wang Affiliation
    ; Shan Cong Affiliation

Abstract

Poly (vinylidene fluoride) (PVDF) microporous film was successfully synthesized and functionalized by poly acrylic acid (PAA) for immobilization of nanoscale zero-valent iron (NZVI). PAA was innovatively introduced onto PVDF film via in situ polymerization of acrylic acid (AA) and followed by ion exchange procedure. The as-prepared PAA/PVDF-NZVI hybrids (PPN) were characterized in terms of morphology (SEM) and surface functional groups (FTIR). FTIR spectra confirms the functionalization of PVDF film by coating of PAA within its micropores. And SEM images suggested that NZVI were well immobilized onto the surface of the support. Over the reaction course, the resultant PPN hybrids demonstrated high reactivity, excellent stability and reusability for Cr(VI) removal. Results showed that lower pH and initial concentration facilitated the removal of Cr(VI) by PPN. Compared with bare NZVI, PAA/PVDF film-immobilized NZVI resulted in a lower activation energy for Cr(VI) removal, indicating that Cr(VI) reduction process with PPN is a surfacecontrolled chemical reaction. Moreover, a two-parameter pseudo-first-order model was provided and well-described the reaction kinetics of Cr(VI) over PPN under various conditions.

Keyword : polyvinylidene fluoride, cation exchange function, hydrophilization, Cr(VI) removal, nanoscale zero-valent iron, revised kinetics, wastewater management

How to Cite
Wang, X., & Cong, S. (2018). Preparation method of NZVI-PVDF hybrid films with cation-exchange function for reductive transformation of Cr(VI). Journal of Environmental Engineering and Landscape Management, 26(1), 19-27. https://doi.org/10.3846/16486897.2017.1339048
Published in Issue
Mar 20, 2018
Abstract Views
910
PDF Downloads
588
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bhattacharya, M.; Dutta, S. K.; Sikder, J.; Mandal, M. K. 2014. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation, Journal of Membrane Science 450: 447‒456. https://doi.org/10.1016/j.memsci.2013.09.037

Byun, Y. J.; Kim, J. H.; Kim, S. S. 2013. Surface modification of PVDF membranes for water treatment via hydrophilic thermal cross-linking method, Desalination and Water Treatment 51(25‒27): 5371‒5378. https://doi.org/10.1080/19443994.2013.768812

Cao, J.; Zhang, W. X. 2006. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles, Journal of Hazardous Materials 132(2‒3): 213‒219. https://doi.org/10.1016/j.jhazmat.2005.09.008

Chen, D.; Yang, K.; Wang, H.; Zhou, J.; Zhang, H. 2015. Cr(VI) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water, RSC Advances 5(80): 65068‒65073. https://doi.org/10.1039/C5RA10573K

Dai, J.; Xiao, K.; Dong, H.; Liao, W.; Tang, X.; Zhang, Z.; Cai, S. 2014. Preparation of Al2O3/PU/PVDF composite membrane and performance comparison with PVDF membrane, PU/PVDF blending membrane, and Al2O3/PVDF hybrid membrane, Desalination and Water Treatment 57(2): 487‒494. https://doi.org/10.1080/19443994.2014.967308

Dong, H.; Xiao, K.; Li, X.; Wang, Z.; Guo, S. 2013. Preparation of PVDF/Al2O3 hybrid membrane via alkaline modification and chemical coupling process, Desalination and Water Treatment 51(19‒21): 3800‒3809. https://doi.org/10.1080/19443994.2013.782086

Fang, X.; Li, J.; Li, X.; Sun, X.; Shen, J.; Han, W.; Wang, L. 2015. Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity, Journal of Membrane Science 476: 216‒223. https://doi.org/10.1016/j.memsci.2014.11.021

Fang, Z.; Chen, J.; Qiu, X.; Qiu, X.; Cheng, W.; Zhu, L. 2011b. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268(1‒3): 60‒67. https://doi.org/10.1016/j.desal.2010.09.051

Fang, Z.; Qiu, X.; Chen, J.; Qiu, X. 2011c. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism, Journal of Hazardous Materials 185(2‒3): 958‒969. https://doi.org/10.1016/j.jhazmat.2010.09.113

Fang, Z.; Qiu, X.; Huang, R.; Qiu, X.; Li, M. 2011a. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization, Desalination 280(1 ‒ 3): 224‒231.

Horzum, N.; Demir, M. M.; Nairat, M.; Shahwan, T. 2013. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic, RSC Advances 3(21): 7828‒7837. https://doi.org/10.1039/c3ra23454a

Jiang, Z.; Zhang, S.; Pan, B.; Wang, W.; Wang, X.; Lv, L.; Zhang, W.; Zhang, Q. 2012. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction, Journal of Hazardous Materials 233‒234: 1‒6. https://doi.org/10.1016/j.jhazmat.2012.06.025

Kim, H.; Hong, H. J.; Lee, Y. J.; Shin, H. J.; Yang, J. W. 2008. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane, Desalination 223(1–3): 212‒220. https://doi.org/10.1016/j.desal.2007.03.015

Kim, M. K.; Shanmuga Sundaram, K.; Anantha Iyengar, G.; Lee, K. P. 2015. A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion, Chemical Engineering Journal 267: 51‒64. https://doi.org/10.1016/j.cej.2014.12.091

Li, S.; Li, T.; Xiu, Z.; Jin, Z. 2010. Reduction and immobilization of chromium(VI) by nano-scale Fe0 particles supported on reproducible PAA/PVDF membrane, Journal of Environmental Monitoring 12(5): 1153‒1158. https://doi.org/10.1039/b919909h

Li, X.; Cao, J.; Zhang, W. 2008. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-Ray photoelectron spectroscopy (HR-XPS), Applied Chemistry 47: 2131‒2139. https://doi.org/10.1039/b919909h

Li, X.; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. 2013. In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling, Desalination 324: 48‒56. https://doi.org/10.1016/j.desal.2013.05.021

Lin, C. J.; Liou, Y. H.; Lo, S. L. 2009. Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene, Chemosphere 74(2): 314‒319. https://doi.org/10.1016/j.chemosphere.2008.08.046

Ling, L.; Pan, B.; Zhang, W. X. 2015. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV), Water Research 71: 274‒281. https://doi.org/10.1016/j.watres.2015.01.002

Lv, X.; Xu, J.; Jiang, G.; Tang, J.; Xu, X. 2012. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions, Journal of Colloid and Interface Science 369(1): 460‒469. https://doi.org/10.1016/j.jcis.2011.11.049

Meng, Z.; Liu, H.; Liu, Y.; Zhang, J.; Yu, S.; Cui, F.; Ren, N.; Ma, J. 2011. Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized in PVDF·Al2O3 membrane for dechlorination of monochloroacetic acid, Journal of Membrane Science 372(1‒2): 165‒171. https://doi.org/10.1016/j.memsci.2011.01.064

Mu, Y.; Ai, Z.; Zhang, L.; Song, F. 2015b. Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(II), ), ACS applied materials & interfaces 7(3): 1997‒2005. https://doi.org/10.1021/am507815t

Mu, Y.; Wu, H.; Ai, Z. 2015a. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires, Journal of Hazardous Materials 298: 1‒10. https://doi.org/10.1016/j.jhazmat.2015.05.008

Oh, S. J.; Kim, N.; Lee, Y. T. 2009. Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement, Journal of Membrane Science 345(1‒2): 13‒20. https://doi.org/10.1016/j.memsci.2009.08.003

Qiu, X.; Fang, Z.; Yan, X.; Cheng, W.; Lin, K. 2013. Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium-contaminated watershed, Chemical Engineering Journal 220: 61‒66. https://doi.org/10.1016/j.cej.2012.11.041

Shen, Y. S.; Wang, S. L.; Huang, S. T.; Tzou, Y. M.; Huang, J. H. 2010. Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material, Journal of Hazardous Materials 179(1‒3): 160‒165. https://doi.org/10.1016/j.jhazmat.2010.02.073

Shih, Y. h.; Hsu, C. y.; Su, Y. f. 2011. Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism, Separation and Purification Technology 76(3): 268‒274. https://doi.org/10.1016/j.seppur.2010.10.015

Shu, H. Y.; Chang, M. C.; Chen, C. C.; Chen, P. E. 2010. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, Journal of Hazardous Materials 184(1‒3): 499‒505. https://doi.org/10.1016/j.jhazmat.2010.08.064

Shu, H. Y.; Chang, M. C.; Yu, H. H.; Chen, W. H. 2007. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles, Journal of colloid and interface science 314(1): 89‒97. https://doi.org/10.1016/j.jcis.2007.04.071

Wang, X.; Chen, C.; Liu, H.; Ma, J. 2008. Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid, Water Research 42(18): 4656‒4664. https://doi.org/10.1016/j.watres.2008.08.005

Xia, Z.; Liu, H., Wang, S.; Meng, Z.; Ren, N. 2012. Preparation and dechlorination of a poly(vinylidene difluoride)-grafted acrylic acid film immobilized with Pd/Fe bimetallic nanoparticles for monochloroacetic acid, Chemical Engineering Journal 200‒202: 214‒223. https://doi.org/10.1016/j.cej.2012.06.056

Xu, L.; Wang, J. 2011. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, Journal of Hazardous Materials 186(1): 256‒264. https://doi.org/10.1016/j.jhazmat.2010.10.116

Yang, J.; Wang, X.; Zhu, M.; Liu, H.; Ma, J. 2014. Investigation of PAA/PVDF-NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics, Journal of Hazardous Materials 264: 269‒277. https://doi.org/10.1016/j.jhazmat.2013.11.037

Zaleckas, E.; Paulauskas, V.; Sendžikienė, E. 2013. Fractionation of heavy metals in sewage sludge and their removal using low-molecular-weight organic acids, Journal of Environmental Engineering and Landscape Management 21(3): 189‒198. https://doi.org/10.3846/16486897.2012.695734