Assessment of spatial and temporal distribution of Urban Heat Islands (UHI) in semi-arid climate
Abstract
An urban heat island phenomenon has increased in the last decades due to rapid urbanization, resulting in a significant impact on local climate. In this study, remote sensing data was used to analyze Spatiotemporal patterns of Urban Heat Island Intensity (UHII) over a 20 years period in a semi-arid climate area. The relationship between the Land Surface Temperature (LST), vegetation and Land Cover Types (LCTs) were examined. The relation between the UHII and its driving factors (different LCTs and meteorological conditions) was analyzed. Analysis of 8-day daytime and nighttime LST data acquired from MODerate-resolution Imaging Spectroradiometer (MODIS) shows that Amman has a significant UHII in both daytime and night time. The results show a negative correlation between the LST and vegetation indicators and between the UHII and the wind speed average, indicating a positive correlation between the UHII and temperature. Vegetation has been proven to significantly reduce LST, mainly in the daytime, due to its cooling effect that results from the transpiration process and shadow effect.
Keyword : Urban Heat Island, Land Cover Type, land surface temperature, vegetation indexes, spatio-temporal pattern, MODIS
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdullah, S., Adnan, M. S. G., Barua, D., Murshed, M. M., Kabir, Z., Chowdhury, M. B. H., Hassan, Q. K., & Dewan, A. (2022). Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecological Informatics, 70, 101730. https://doi.org/10.1016/j.ecoinf.2022.101730
Agarwal, M., & Tandon, A. (2010). Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Applied Mathematical Modelling, 34(9), 2520–2530. https://doi.org/10.1016/j.apm.2009.11.016
Alnsour, J. A. (2016). Managing urban growth in the city of Amman, Jordan. Cities, 50, 93–99. https://doi.org/10.1016/j.cities.2015.08.011
Al Rawashdeh, S., & Saleh, B. (2006). Satellite monitoring of urban spatial growth in the amman area, Jordan. Journal of Urban Planning and Development, 132(4), 211–216. https://doi.org/10.1061/(ASCE)0733-9488(2006)132:4(211)
Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
Assaf, M. N. (2019). Utilizing Landsat 8 and Sentinel 2 satellites images for water quality evaluation in King Tala Dam. German Jordanian University.
Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009
Botje, D., Dewan, A., & Chakraborty, T. C. (2022). Comparing coarse-resolution land surface temperature products over Western Australia. Remote Sensing, 14(10), 2296. https://doi.org/10.3390/rs14102296
Brazel, A., Gober, P., Lee, S.-J., Grossman-Clarke, S., Zehnder, J., Hedquist, B., & Comparri, E. (2007). Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Climate Research, 33(2), 171–182. https://doi.org/10.3354/cr033171
Brazel, A., Selover, N., Vose, R., & Heisler, G. (2000). The tale of two climates Baltimore and Phoenix urban LTER sites. Climate Research, 15(2), 123–135. https://doi.org/10.3354/cr015123
Carver, S., Mikkelsen, N., & Woodward, J. (2002). Long‐term rates of mass wasting in Mesters Vig, northeast Greenland: Notes on a re‐survey. Permafrost and Periglacial Processes, 13(3), 243–249. https://doi.org/10.1002/ppp.421
Chen, Y.-C., Chiu, H.-W., Su, Y.-F., Wu, Y.-C., & Cheng, K.-S. (2017). Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258. https://doi.org/10.1016/j.landurbplan.2016.06.014
Cheng, K.-S., Su, Y.-F., Kuo, F.-T., Hung, W.-C., & Chiang, J.-L. (2008). Assessing the effect of landcover changes on air temperature using remote sensing images—A pilot study in northern Taiwan. Landscape and Urban Planning, 85(2), 85–96. https://doi.org/10.1016/j.landurbplan.2007.09.014
Chudnovsky, A., Ben-Dor, E., & Saaroni, H. (2004). Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy and Buildings, 36(11), 1063–1074. https://doi.org/10.1016/j.enbuild.2004.01.052
Coseo, P., & Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 125, 117–129. https://doi.org/10.1016/j.landurbplan.2014.02.019
Debbage, N., & Shepherd, J. M. (2015). The urban heat island effect and city contiguity. Computers, Environment and Urban Systems, 54, 181–194. https://doi.org/10.1016/j.compenvurbsys.2015.08.002
Department of Statistics. (2019). Population of Jordan Kingdom. Department of Statistics, Jordan Kingdom. http://dosweb.dos.gov.jo/DataBank/JordanInFigures/Jorinfo_2019.pdf
Dewan, A., Kiselev, G., & Botje, D. (2021a). Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities. Applied Geography, 135, 102533. https://doi.org/10.1016/j.apgeog.2021.102533
Dewan, A., Kiselev, G., & Botje, D., Mahmud, G. I., Bhuian, M. H., & Hassan, Q. K. (2021b). Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustainable Cities and Society, 71, 102926. https://doi.org/10.1016/j.scs.2021.102926
Du, H., Wang, D., Wang, Y., Zhao, X., Qin, F., Jiang, H., & Cai, Y. (2016). Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Science of the Total Environment, 571, 461–470. https://doi.org/10.1016/j.scitotenv.2016.07.012
Ejiagha, I. R., Ahmed, M. R., Dewan, A., Gupta, A., Rangelova, E., & Hassan, Q. K. (2022). Urban warming of the two most populated cities in the Canadian Province of Alberta, and its influencing factors. Sensors, 22(8), 2894. https://doi.org/10.3390/s22082894
Ejiagha, I. R., Ahmed, M. R., Hassan, Q. K., Dewan, A., Gupta, A., & Rangelova, E. (2020). Use of remote sensing in comprehending the influence of urban landscape’s composition and configuration on land surface temperature at neighbourhood scale. Remote Sensing, 12(15), 2508. https://doi.org/10.3390/rs12152508
Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359. https://doi.org/10.1016/j.scitotenv.2016.10.195
Faridatul, M. I., Adnan, M. S. G., & Dewan, A. (2022). Nexus of urbanization and changes in agricultural land in Bangladesh. In K. P. Vadrevu, T. Le Toan, S. S. Ray, & C. Justice (Eds.), Remote sensing of agriculture and land cover/land use changes in South and Southeast Asian countries (pp. 455–469). Springer International Publishing. https://doi.org/10.1007/978-3-030-92365-5_26
Ghurah, M. H. A., Kamarudin, M. K. A., Wahab, N. A., Juahir, H., Lananan, F., Maulud, K. A. N. N., & Zin, M. S. M. (2018). Assessment of urban growth and sprawl using GIS and remote sensing techniques in South Ghor region, Al-Karak, Jordan. International Journal of Engineering & Technology, 7(3.14), 5–11. https://doi.org/10.14419/ijet.v7i3.14.16853
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760. https://doi.org/10.1126/science.1150195
Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1–10. https://doi.org/10.1016/j.landurbplan.2014.11.007
Hu, Y., & Jia, G. (2010). Influence of land use change on urban heat island derived from multi‐sensor data. International Journal of Climatology, 30(9), 1382–1395. https://doi.org/10.1002/joc.1984
Huang, X., Huang, J., Wen, D., & Li, J. (2021). An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. International Journal of Applied Earth Observation and Geoinformation, 95, 102255. https://doi.org/10.1016/j.jag.2020.102255
Hussein, N. M., & Assaf, M. N. (2020). Multispectral remote sensing utilization for monitoring chlorophyll-a levels in inland water bodies in Jordan. The Scientific World Journal, 2020, 1–14. https://doi.org/10.1155/2020/5060969
Hussein, N. M., Assaf, M. N., & Abohussein, S. S. (2021). Application of sentinel 2 to evaluate colored dissolved organic matter algorithms for inland water bodies in Jordan [Conference presentation]. Proceedings of the 9th Jordan International Chemical Engineering Conference (JICHEC9).
Hussein, N. M., Assaf, M. N., & Abohussein, S. S. (2022). Sentinel 2 analysis of turbidity retrieval models in inland water bodies: The case study of Jordanian dams. The Canadian Journal of Chemical Engineering, 1–14. https://doi.org/10.1002/cjce.24526
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. https://doi.org/10.1016/j.rse.2009.10.008
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528–531. https://doi.org/10.1038/nature01675
Kjelgren, R., & Montague, T. (1998). Urban tree transpiration over turf and asphalt surfaces. Atmospheric Environment, 32(1), 35–41. https://doi.org/10.1016/S1352-2310(97)00177-5
Koch, J., Wimmer, F., & Schaldach, R. (2018). Analyzing the relationship between urbanization, food supply and demand, and irrigation requirements in Jordan. Science of the Total Environment, 636, 1500–1509. https://doi.org/10.1016/j.scitotenv.2018.04.058
Lemonsu, A., Viguie, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605. https://doi.org/10.1016/j.uclim.2015.10.007
Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008
Mathew, A., Khandelwal, S., & Kaul, N. (2017). Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustainable Cities and Society, 35, 157–177. https://doi.org/10.1016/j.scs.2017.07.013
Nichol, J. (2005). Remote sensing of urban heat islands by day and night. Photogrammetric Engineering Remote Sensing, 71(5), 613–621. https://doi.org/10.14358/PERS.71.5.613
Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment, 7(8), 769–779. https://doi.org/10.1016/0004-6981(73)90140-6
Oke, T. R. (1976). The distinction between canopy and boundary‐layer urban heat islands. Atmosphere, 14(4), 268–277. https://doi.org/10.1080/00046973.1976.9648422
Oke, T. R., & East, C. (1971). The urban boundary layer in Montreal. Boundary-Layer Meteorology, 1(4), 411–437. https://doi.org/10.1007/BF00184781
Oke, T. R., & Hannell, F. G. (1970). The form of the urban heat island in Hamilton, Canada (Technical Note No. 108). WMO.
Oroud, I., & Al-Rousan, N. (2004). Urban encroachment on rain-fed agricultural lands in Jordan during the second half of the 20th century. The Arab World Geographer, 7(3), 165–180.
Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., & Camps, A. (2016). Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations. Remote Sensing, 8(7), 587. https://doi.org/10.3390/rs8070587
Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145–155. https://doi.org/10.1016/j.rse.2015.11.027
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438
Rhinane, H., Hilali, A., Bahi, H., & Berrada, A. (2012). Contribution of landsat TM data for the detection of urban heat islands areas case of Casablanca. Journal of Geographic Information System, 4(1), 20–26.
Sakakibara, Y., & Owa, K. (2005). Urban–rural temperature differences in coastal cities: Influence of rural sites. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(6), 811–820. https://doi.org/10.1002/joc.1180
Saleh, B., & Al Rawashdeh, S. (2007). Study of urban expansion in Jordanian cities using GIS and remoth sensing. International Journal of Applied Science and Engineering, 5(1), 41–52.
Schatz, J., & Kucharik, C. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371–2386. https://doi.org/10.1175/JAMC-D-14-0107.1
Sharma, R., & Joshi, P. K. (2015). The changing urban landscape and its impact on local environment in an Indian megacity: The case of Delhi. In Urban development challenges, risks and resilience in Asian mega cities (pp. 61–81). Springer. https://doi.org/10.1007/978-4-431-55043-3_4
Si, M., Li, Z.-L., Nerry, F., Tang, B.-H., Leng, P., Wu, H., Zhang, X., & Shang, G. (2022). Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 321–335. https://doi.org/10.1016/j.isprsjprs.2021.11.017
Sobrino, J. A., Oltra-Carrió, R., Jiménez-Muñoz, J. C., Julien, Y., Soria, G., Franch, B., & Mattar, C. (2012). Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX). International Journal of Applied Earth Observation and Geoinformation, 18, 141–147. https://doi.org/10.1016/j.jag.2012.01.022
Strong, C., Fuentes, J. D., Davis, R. E., & Bottenheim, J. W. (2002). Thermodynamic attributes of Arctic boundary layer ozone depletion. Atmospheric Environment, 36(15–16), 2641–2652. https://doi.org/10.1016/S1352-2310(97)00177-5
Su, W., Gu, C., & Yang, G. (2010). Assessing the impact of land use/land cover on urban heat island pattern in Nanjing City, China. Journal of Urban Planning and Development, 136(4), 365–372. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000033
Tan, M., & Li, X. (2015). Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 49, 100–106. https://doi.org/10.1016/j.habitatint.2015.05.013
United Nations, & Department of Economic and Social Affairs. (2015). Transforming our world: The 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda
U.S. Environmental Protection Agency. (2008). Reducing urban heat islands: Compendium of strategies. Draft. https://www.epa.gov/heat-islands/heat-island-compendium
Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
Wan, Z. (2008). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112(1), 59–74. https://doi.org/10.1016/j.rse.2013.08.027
Weng, Q. (2001). A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014. https://doi.org/10.1080/01431160118847
Yao, R., Wang, L., Huang, X., Chen, J., Li, J., & Niu, Z. (2018a). Less sensitive of urban surface to climate variability than rural in Northern China. Science of the Total Environment, 628, 650–660. https://doi.org/10.1016/j.scitotenv.2018.02.087
Yao, R., Wang, L., Huang, X., Niu, Y., Chen, Y., & Niu, Z. (2018b). The influence of different data and method on estimating the surface urban heat island intensity. Ecological Indicators, 89, 45–55. https://doi.org/10.1016/j.ecolind.2018.01.044
Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. Journal of Environmental Management, 281, 111885. https://doi.org/10.1016/j.jenvman.2020.111885
Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003
Zhao, J., Zhao, X., Liang, S., Zhou, T., Du, X., Xu, P., & Wu, D. (2020). Assessing the thermal contributions of urban land cover types. Landscape and Urban Planning, 204, 103927. https://doi.org/10.1016/j.landurbplan.2020.103927
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. A. (2019). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048
Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61. https://doi.org/10.1016/j.rse.2014.05.017
Zhou, D., Zhao, S., Zhang, L., & Liu, S. (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sensing of Environment, 176, 272–281. https://doi.org/10.1016/j.rse.2016.02.010