Share:


Evaluation of landfill management at Piyungan landfill Yogyakarta by using integrated risk based approach method

    Hani Mayasari Affiliation
    ; Banu Iqra Wardhana Affiliation
    ; Iqmal Tahir Affiliation

Abstract

The volume of domestic waste in the Special Region of Yogyakarta (DIY Region) during the last five years has increased significantly by 34%, while the volume of waste handled has only increased by 8%. The average produced waste was 1,008.26 tonnes/day, while the handled waste reached 642.01 tonnes/day. That means 366.25 tonnes of unhandled waste per day, resulting in environmental pollution. This paper aims to evaluate the management of the Piyungan landfill by using the Integrated Risk Based Approach (IRBA). IRBA is a tool of decision-making created in 2005 for landfill rehabilitation, including sites with high health risks, maximum environmental impacts, and sensitive public concerns. A total of 26 parameters were used to evaluate the landfill and waste management in the Piyungan landfill site. The Risk Index (RI) calculated using the IRBA method shows that the final result of the Piyungan landfill was 649.76. The value of RI indicated a potential for high hazard, and the landfill must be closed immediately because it pollutes the environment or causes social problems. The factual conditions in the field indicate that technical age and capacity are serious problems faced with concern with the management of waste for the Yogyakarta, Sleman Regency, and Bantul Regency as Piyungan landfill users.

Keyword : IRBA, management of the landfill, Piyungan landfill, waste, Yogyakarta

How to Cite
Mayasari, H., Wardhana, B. I., & Tahir, I. (2023). Evaluation of landfill management at Piyungan landfill Yogyakarta by using integrated risk based approach method. Journal of Environmental Engineering and Landscape Management, 31(1), 23–33. https://doi.org/10.3846/jeelm.2023.18065
Published in Issue
Jan 13, 2023
Abstract Views
665
PDF Downloads
584
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ames, H., Glenton, C., & Lewin, S. (2019). Purposive sampling in a qualitative evidence synthesis: A worked example from a synthesis on parental perceptions of vaccination communication. BMC Medical Research Methodology, 19(26), 1–9. https://doi.org/10.1186/s12874-019-0665-4

Ariyani, S. F., Putra, H. P., Kasam, Damanhuri, E., & Sembiring, E. (2019). Evaluation of waste management in Piyungan landfill, Bantul Regency, Yogyakarta, Indonesia. MATEC Web of Conferences, 280, 1–11. https://doi.org/10.1051/matecconf/201928005018

Astono, W., Purwaningrum, P., & Wahyudyanti, R. (2016). Perencanaan tempat pembuangan akhir sampah dengan menggunakan metode Sanitary Landfill studi kasus: Zona 4 TPA Jatiwaringin, Kabupaten Tangerang. Indonesian Journal of Urban and Environmental Technology, 7(1), 7–15. https://doi.org/10.25105/urbanenvirotech.v7i1.711

Axmalia, A., Mulasari, S. A., & Hariyono, W. (2021). The impact of the Piyungan landfills waste on public health problems in Dusun Ngablak Desa Sitimulyo kecamatan Piyungan. International Academic Research Journal of Internal Medicine & Public Health, 2(2), 26–31.

Balai Pengelolaan Sampah. (2021). Laporan pelaksanaan RKL-RPL TPA Piyungan periode Januari – Juni 2021. Dinas Lingkungan Hidup dan Kehutanan DIY.

Bantul, D. L. H. K. (2020). Pemetaan kajian biomassa tanah di Kabupaten Bantul. Dinas Lingkungan Hidup Kabupaten Bantul.

Dinas Pariwisata Kota Yogyakarta. (2020). Kajian jumlah kunjungan wisata Kota Yogyakarta Tahun 2020. Dinas Pariwisata Kota Yogyakarta.

Eiselt, H. A. (2006). Locating landfills and transfer stations in Alberta. INFOR: Information System and Operational Research, 44(4), 285–298. https://doi.org/10.1080/03155986.2006.11732753

Erkut, E., & Moran, S. R. (1991). Locating obnoxious facilities in the public sector: An application of the Analytic Hierarchy Process to municipal landfill siting decisions. Socio-Economic Planning Science, 25(2), 89–102. https://doi.org/10.1016/0038-0121(91)90007-E

Fakhurozi, A., Suhariyanto, T. T., & Faishal, M. (2021). Analysis of environmental impact and municipal waste management strategy: A case of the Piyungan landfill, Yogyakarta, Indonesia. Jurnal Optimasi Sistem Industri, 20(1), 61. https://doi.org/10.25077/josi.v20.n1.p61-71.2021

Feng, D., Song, C., & Mo, W. (2021a). Environmental, human health, and economic implications of landfill leachate treatment for per- and polyfluoroalkyl substance removal. Journal of Environmental Management, 289, 1–10. https://doi.org/10.1016/j.jenvman.2021.112558

Feng, J., Yu, Q., He, A., & Sheng, G. D. (2021b). Accelerating Cu and Cd removal in soil flushing assisted by regulating permeability with electrolytes. Chemosphere, 281, 1–8. https://doi.org/10.1016/j.chemosphere.2021.130883

Grandjean, P., & Clapp, R. (2015). Perfluorinated alkyl substances: Emerging insights into health risks. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy, 25(2), 147–163. https://doi.org/10.1177/1048291115590506

Intrakamhaeng, V., Clavier, K. A., & Townsend, T. G. (2020). Hazardous waste characterization implications of updating the toxicity characteristic list. Journal of Hazardous Materials, 383, 1–10. https://doi.org/10.1016/j.jhazmat.2019.121171

Kharat, M. G., Kamble, S. J., & Raut, R. D. (2016). Identification and evaluation of landfill site selection criteria using a hybrid Fuzzy Delphi, Fuzzy AHP, and DEMATEL-based approach. Modeling Earth Systems and Environment, 1–13. https://doi.org/10.1007/s40808-016-0171-1

Kurian, J., Esakku, S., Nagendran, R., & Visvanathan, C. (2005, October). A decision-making tool for dumpsite rehabilitation in developing countries. In Proceedings Sardinia, Tenth International Waste Management and Landfill Symposium (pp. 1–8), Cagliari, Italy.

Laboratory Test. (2021). UPT Laboratorium INSTIPER, Yogyakarta.

Li, Q., Zhi, S., Yu, X., Li, Y., Guo, H., Yang, Z., & Zhang, S. (2019). Biodegradation of volatile solids and water mass balance of bio-drying sewage sludge after electro-dewatering pretreatment. Waste Management, 91, 9–19. https://doi.org/10.1016/j.wasman.2019.04.051

Luo, X., Tong, X., & Hu, Z. (2021). An applicable and automatic method for earth surface water mapping based on multispectral images. International Journal of Applied Earth Observation and Geoinformation, 103, 1–20. https://doi.org/10.1016/j.jag.2021.102472

Marliani, N. (2014). Pemanfaatan limbah rumah tangga (sampah anorganik) sebagai bentuk implementasi dari pendidikan lingkungan hidup. Jurnal Formatif, 4(2), 124–132. https://doi.org/10.30998/formatif.v4i2.146

Minghua, Z., Xiumin, F., Rovetta, A., Qichang, H., Vicentini, F., Bingkai, L., Giusti, A., & Yi, L. (2009). Municipal solid waste management in Pudong New Area, China. Waste Management, 29(3), 1227–1233. https://doi.org/10.1016/j.wasman.2008.07.016

Mohammed, H. I., Majid, Z., Yusof, N. B., & Yamusa, B. Y. (2018). Analysis of Multi-Criteria Evaluation Method of landfill site selection for municipal solid waste management. E3S Web of Conferences 34, 1–8. https://doi.org/10.1051/e3sconf/20183402010

Nursetiawan, Shaylinda, N. M. Z., Amani, N. F. M. K., Mohd-Salleh, S. N. A., & Shahar, M. S. (2020). Investigation of heavy metals pollution in Piyungan Landfill underground and surface water. IOP Conference Series: Earth and Environmental Science, 498(1), 012080. https://doi.org/10.1088/1755-1315/498/1/012080

Ojuri, O. O., Ayodele, F. O., & Oluwatuyi, O. E. (2018). Risk assessment and rehabilitation potential of a millennium city dumpsite in Sub-Saharan Africa. Waste Management, 76, 621–628. https://doi.org/10.1016/j.wasman.2018.03.002

Parhusip, J. A., Harijoko, A., Putra, D. P. E., & Suryanto, W. (2017). Assessment of leachate infiltration from Piyungan landfill using electrical resistivity method. AIP Conference Proceedings, 1861(1), 030008. https://doi.org/10.1063/1.4990895

Postacchini, L., Ciarapica, F. E., & Bevilacqua, M. (2018). Environmental assessment of landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. Journal of Cleaner Production, 183, 1021–1033. https://doi.org/10.1016/j.jclepro.2018.02.219

Purnama Putra, H., Damanhuri, E., & Marzuko, A. (2018). The concept of “loop Cycle” in landfill management (case study at Piyungan landfill, Yogyakarta, Indonesia). MATEC Web of Conferences, 154, 1–4. https://doi.org/10.1051/matecconf/201815402003

Qin, L., Xu, Z., Liu, L., Lu, H., Wan, Y., & Xue, Q. (2020). In-situ biodegradation of volatile organic compounds in landfill by sewage sludge modified waste-char. Waste Management, 105, 317–327. https://doi.org/10.1016/j.wasman.2020.02.022

Ramadhan, F., Prasasti D. R. F., & Adji, T. N. (2019). TPA Piyungan, Bantul, Yogyakarta (Study of Groundwater Contamination near Piyungan Landfill). Proceeding, Pertemuan Ilmiah Tahunan Ke-3, 1–9.

Rezaeisabzevar, Y., Bazargan, A., & Zohourian, B. (2020). Landfill site selection using multi-criteria decision making: Influential factors for comparing locations. Journal of Environmental Sciences, 93, 170–184. https://doi.org/10.1016/j.jes.2020.02.030

Saxena, S., Rajendran, C., Sanjeevi, V., & Shahabudeen, P. (2021). Optimization of solid waste management in a metropolitan city. Materials Today: Proceedings, 46, 8231–8238. https://doi.org/10.1016/j.matpr.2021.03.219

Serdavic, A. (2009). Environmental damage assessment, waste management, and overview of the current situation in Bosnia and Herzegovina. NATO Science for Peace and Security Series – C: Environmental Security, 3, 357–381. https://doi.org/10.1007/978-90-481-2386-5_14

Simsek, C., Kincal, C., & Gunduz, O. (2006). A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environmental Geology, 49, 620–633. https://doi.org/10.1007/s00254-005-0111-2

Sihombing, A. L. S., & Darmawan, R. (2020). Municipal solid waste characteristic and energy potential in Piyungan landfill. Applied Mechanics and Materials, 898, 58–63. https://doi.org/10.4028/www.scientific.net/AMM.898.58

Skytt, T., Nors, S., & Jonsson, B. (2020). Global warming and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability – A case study of Jämtland, Sweden. Ecological Indicators, 110, 1–20. https://doi.org/10.1016/j.ecolind.2019.105831

Turan, N. G., Çoruh, S., Akdemir, A., & Ergun, O. N. (2009). Municipal solid waste management strategies in Turkey. Waste Management, 29(1), 465–469. https://doi.org/10.1016/j.wasman.2008.06.004

Warmadewanthi, I. D. A. A., Chrystiadini, G., & Budi, S. (2021). Bioresource Technology Reports impact of degraded solid waste utilization as a daily cover for the landfill on the formation of methane and leachate. Bioresource Technology Reports, 15, 1–9. https://doi.org/10.1016/j.biteb.2021.100797

Widiarti, I. W., Isni, N. N., & Sungkowo, A. (2020). Assessment of dumpsite in Indonesia using integrated risk-based approach: Case study of Kopi Luhur dumpsite, Cirebon. AIP Conference Proceedings, 2245, 1–7. https://doi.org/10.1063/5.0007208

Widyarsana, I. M. W., Damanhuri, E., Agustina, E., & Aulia, R. N. (2019). Risk assessment and rehabilitation potential of municipal solid waste landfills in Bali Province, Indonesia. International Journal of GEOMATE, 17(63), 164–171. https://doi.org/10.21660/2019.63.39057

Wilopo, W., Putra, D. P. E., & Hendrayana, H. (2021). Impacts of precipitation, land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia. Environmental Monitoring and Assessment, 193(2), 1–14. https://doi.org/10.1007/s10661-021-08863-z

Yang, R., Xu, Z., Chai, J., Qin, Y., & Li, Y. (2016). Permeability test and slope stability analysis of municipal solid waste in Jiangcungou landfill, Shaanxi, China. Journal of the Air & Waste Management Association, 66(7), 655–662. https://doi.org/10.1080/10962247.2015.1093038

Yin, Y., Li, B., Wang, W., Zhan, L., Xue, Q., Gao, Y., Zhang, N., Chen, H., Liu, T., & Li, A. (2016). Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization. Engineering, 2(2), 230–249. https://doi.org/10.1016/J.ENG.2016.02.005