Role of thermodynamic processes in plant leaf gas exchange system for assimilation of CO2 emissions from the ambient air
Abstract
When temperature in the leaf gas exchange system changes, the thermodynamic parameters describing the condition of moist air also change. A temperature change of 1 oC in plant leaf tissues leads to a change in partial water vapour pressure of 144 Pa in the gas exchange cavities. Then a temperature decrease of 1 oC in a plant leaf produces 0.897 g of condensate, from 1 m3 of air in leaf ventilation cavities on the surface. When the temperature of plant leaves in the leaf ventilation system changes, the total water vapor state on the inner surface of the leaves changes, and the water vapor state in the stomatal cavities changes. The thickness of the formed condensate film on the plant leaf canal wall surfaces depends on the canal diameter and temperature change. The paper presents information about the mechanism of water formation and thermodynamic processes in the plant leaf gas exchange system participating in the process of assimilation. The formation and change of the internal surfaces of the stomatal cavities of the water film sheet allow the participation of chemical processes in the assimilation of CO2 emissions from the environment.
Keyword : CO2 assimilation process, thermodynamics of a plant leaf, leaf gas exchange system, bionic leaf
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Boye, H., Staate, Y., & Schmidt, J. (2006). Experimental investigation and modeling of heat transfer during convective boiling in a mini-channel. International Journal of Heat and Mass Transfer, 35, 1237–1248.
Brazauskienė, D. M. (2004). Agroekologija ir chemija. Naujasis lankas.
Butkus, D., Lukšienė, B., & Pliopaitė-Bataitienė, I. (2014). Radionuclides in plants. Vilniaus Gediminas Technical University.
Fitte, A., & Hay, R. (2002). Environmental physiology of plants. Academic Press.
Ide, H., Kariyasaki, A., & Fukano, T. (2007). Fundamental data on the gas–liquid two-phase flow in minichannels. International Journal of Thermal Sciences, 46(6), 519–530. https://doi.org/10.1016/j.ijthermalsci.2006.07.012
Incropera, F. P., & DeWitt, D. P. (2001). Fundamentals of heat and mass transfer (5th ed.). Wiley.
Martin, J., & Henrichs, T. (2010). The European environment. European Environment Agency.
Nobel, P. S. (1991). Physiological and environmental plant physiology. Academic Press.
Pirasteh‐Anosheh, H., Saed‐Moucheshi, A., Pakniyat, H., & Pessarakli, M. (2016). Chapter 3: Stomatal responses to drought stress. John Wiley & Sons. https://doi.org/10.1002/9781119054450.ch3
Sage, R. F., & Monson, R. K. (1999). C4 plant biology (1st ed.). Academic Press. https://doi.org/10.1016/B978-0-12-614440-6.X5000-9
Sajith, V., Haridas, D., & Sobhan, C. B. (2011). Reddy Convective heat transfer studies in macro and mini channels. International Journal of Thermal Sciences, 50, 239–249. https://doi.org/10.1016/j.ijthermalsci.2010.04.005
Shujie, M., Yunfa, Q., & Futao, Z. (2015). Conversion of cropland to grassland and forest mitigates global warming potential in Northeast China. Polish Journal of Environmental Studies, 24, 1195–1203. https://doi.org/10.15244/pjoes/33928
Sirvydas, A., Kerpauskas, P., & Kučinskas, V. (2011a). Plant energy exchange. Akademija.
Sirvydas, A., Kučinskas, V., Kerpauskas, P., & Nadzeikienė, J. (2011b). Theoretical modeling of temperature pulsations in plant leaf which are caused by leaf swing with respect to the sun. Journal of Environmental Engineering and Landscape Management, 19, 251–259. https://doi.org/10.3846/16486897.2011.606174
Sirvydas, A., Kučinskas, V., Kerpauskas, P., & Ūksas, T. (2014). The principle of transforming the solar energy to mechanical energy in the plant leaf stomata engine. Energetics, 60, 19–26.
Sirvydas, A., Nadzeikienė, J., Kerpauskas, P., & Ūksas, T. (2013). The principle of heat conversion into mechanical work. Mechanika, 19, 358–362. https://doi.org/10.5755/j01.mech.19.3.4661
Sirvydas, A., Kerpauskas, P., Nadzeikienė, J., Stepanas, A., & Tereščiuk, V. S. (2006). Temperature measurements in research of thermal weed extermination. In Proceedings of the International Conference Development of Agricultural Technologies and Technical Means in Ecological and Energetic Aspects (pp. 321–331), Lithuania, Raudondvaris.
Sobhan, C. B., & Garimella, S. V. (2001). Comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophysical Engineering, 5, 293–311. https://doi.org/10.1080/10893950152646759
Sobhan, C. B., & Garimella, S. V. (2003). Transport in microchannels a critical review. Annual Review of Heat Transfer, 13, 1–50. https://doi.org/10.1615/AnnualRevHeatTransfer.v13.30
Stern, K. (1933). Pflanzenthermodinamik. Berlin.
Stravinskienė, V. (2009). Environmental bioindication. Kaunas.
Šlapakauskas, V. (2006). Ecophysiology of plants. Lututė.
Ūksas, T., Čingienė, R., Kučinskas, V., & Sirvydas, A. (2016, September 7–9). Solar energy conversion in plant leaf stomata as leaf temperature changes. In 6th International Conference on Trends in Agricultural Engineering (pp. 652–657), Prague, Czech Republic.
Wang, S. J., Ren, L. Q., Liu, Y., Han, Z. W., & Yang, Y. (2010). Mechanical characteristics of typical plant leaves. Journal of Bionic Engineering, 7, 294–300. https://doi.org/10.1016/S1672-6529(10)60253-3
Ye, H., Yuan, Z., & Zhang, S. (2013). The heat and mass transfer analysis of a leaf. Journal of Bionic Engineering, 10, 170–176. https://doi.org/10.1016/S1672-6529(13)60212-7
Yuan, Z., Ye, H., & Li, S. (2014). Bionic leaf simulating the thermal effect of natural leaf transpiration. Journal of Bionic Engineering, 11, 90–97. https://doi.org/10.1016/S1672-6529(14)60023-8
Zhang, Y. (2015). On the climatic uncertainty to the environment extremes: A Singapore case and statistical approach. Polish Journal of Environmental Studies, 24, 1413–1422. https://doi.org/10.15244/pjoes/31718