Share:


Trends and performances of the algal biofuel: a bibliometric approach

    Conghao Gao Affiliation
    ; Huaijia Xin Affiliation
    ; Shu Yang Affiliation
    ; Zhuo Li Affiliation
    ; Shulin Liu Affiliation
    ; Bin Xu Affiliation
    ; Tianyang Zhang Affiliation
    ; Susmita Dutta Affiliation
    ; Yulin Tang Affiliation

Abstract

The paper systematically presents a survey of the literature on algal biofuel by a bibliometric assessment. Based on 10,201 articles extracted from the Science Citation Index Expanded database during 1980–2019, a knowledge-generating system about algal biofuel has been established through analysis of publication performance, social networks, citations analysis and keywords analysis. Annual publication output in algal biofuel research has rapidly increased, particularly over the past decade. “Bioresource Technology” is the most outstanding journal when all analysis indices have been taken into account. The USA ranks 1st with 2,151 publications and has a high supremacy in international research collaborations. Through the analysis of keywords, the research trends of algae biofuel in algae selection, cultivation, harvesting, extraction, conversion and bioproducts are reviewed. The future of algal biofuel is quite promising, however, for its commercial production, several technical challenges like large-scale algal biomass production, cheap harvesting technology, etc. have to be met a-priori.

Keyword : algae, biofuel, bibliometric, social network analysis, timeline analysis, research hotspots, eco-energy

How to Cite
Gao, C., Xin, H., Yang, S., Li, Z., Liu, S., Xu, B., Zhang, T., Dutta, S., & Tang, Y. (2022). Trends and performances of the algal biofuel: a bibliometric approach. Journal of Environmental Engineering and Landscape Management, 30(2), 284-300. https://doi.org/10.3846/jeelm.2022.16746
Published in Issue
Jun 6, 2022
Abstract Views
688
PDF Downloads
484
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adenle, A. A., Haslam, G. E., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182–195. https://doi.org/10.1016/j.enpol.2013.05.088

Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable & Sustainable Energy Reviews, 15, 584–593. https://doi.org/10.1016/j.rser.2010.09.018

Ajeej, A., Thanikal, J. V., Narayanan, C. M., & Kumar, R. S. (2015). An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renewable & Sustainable Energy Reviews, 50, 270–276. https://doi.org/10.1016/j.rser.2015.04.121

Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae: A review. Renewable & Sustainable Energy Reviews, 27, 128–148. https://doi.org/10.1016/j.rser.2013.06.029

Baltussen, A., & Kindler, C. H. (2004). Citation classics in anesthetic journals. Anesthesia and Analgesia, 98, 443–451. https://doi.org/10.1213/01.ANE.0000096185.13474.0A

Bhatia, S. K., Mehariya, S., Bhatia, R. K., Kumar, M., Pugazhendhi, A., Awasthi, M. K., Atabani, A. E., Kumar, G., Kim, W., Seo, S.-O., & Yang, Y.-H. (2021). Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Science of the Total Environment, 751, 141599. https://doi.org/10.1016/j.scitotenv.2020.141599

Borowitzka, M. A., & Moheimani, N. R. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18, 13–25. https://doi.org/10.1007/s11027-010-9271-9

Brennan, L., & Owende, P. (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14, 557–577. https://doi.org/10.1016/j.rser.2009.10.009

Bruhn, A., Dahl, J., Nielsen, H. B., Nikolaisen, L., Rasmussen, M. B., Markager, S., Olesen, B., Arias, C., & Jensen, P. D. (2011). Bioenergy potential of ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595–2604. https://doi.org/10.1016/j.biortech.2010.10.010

Chamkalani, A., Zendehboudi, S., Rezaei, N., & Hawboldt, K. (2020). A critical review on life cycle analysis of algae biodiesel: Current challenges and future prospects. Renewable & Sustainable Energy Reviews, 134, 110143. https://doi.org/10.1016/j.rser.2020.110143

Chen, C. (2017). Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2, 1–40. https://doi.org/10.1515/jdis-2017-0006

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71–81. https://doi.org/10.1016/j.biortech.2010.06.159

Chen, H. H., Zhou, D., Luo, G., Zhang, S. C., & Chen, J. M. (2015). Macroalgae for biofuels production: Progress and perspectives. Renewable & Sustainable Energy Reviews, 47, 427–437. https://doi.org/10.1016/j.rser.2015.03.086

Chen, H. Q., & Ho, Y. S. (2015). Highly cited articles in biomass research: A bibliometric analysis. Renewable & Sustainable Energy Reviews, 49, 12–20. https://doi.org/10.1016/j.rser.2015.04.060

Chen, M., Tang, H. Y., Ma, H. Z., Holland, T. C., Ng, K. Y. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae dunaliella tertiolecta. Bioresource Technology, 102, 1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062

Cheng, Z., Kong, W., Cheng, Z., Qi, H., Yang, S., Zhang, A., & Niu, S. (2020). A bibliometric-based analysis of the high-value application of chlorella. 3 Biotech, 10. https://doi.org/10.1007/s13205-020-2102-0

Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S.-M., Ling, T. C., Nagarajan, D., Lee, D.-J., & Chang, J.-S. (2018). Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy, 129, 838–852. https://doi.org/10.1016/j.renene.2017.04.001

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Choi, J., Yi, S., & Lee, K. C. (2011). Analysis of keyword networks in mis research and implications for predicting knowledge evolution. Information & Management, 48, 371–381. https://doi.org/10.1016/j.im.2011.09.004

Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 44, 1813–1819. https://doi.org/10.1021/es902838n

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of nannochloropsis oculata and chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006

Dave, N., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2019). A critical review on production of bioethanol from macroalgal biomass. Algal Research, 42, 101606. https://doi.org/10.1016/j.algal.2019.101606

del Rosario Rodero, M., Posadas, E., Toledo-Cervantes, A., Lebrero R., & Munoz, R. (2018). Influence of alkalinity and temperature on photosynthetic biogas upgrading efficiency in high rate algal ponds. Algal Research, 33, 284–290. https://doi.org/10.1016/j.algal.2018.06.001

Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., Aradhyula, T. V., Velpuri, J., & Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable & Sustainable Energy Reviews, 94, 49–68. https://doi.org/10.1016/j.rser.2018.05.012

Faeth, J. L., & Savage, P. E. (2016). Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Bioresource Technology, 206, 290–293. https://doi.org/10.1016/j.biortech.2016.01.115

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003

Falagas, M. E., Pitsouni E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of pubmed, scopus, web of science, and google scholar: Strengths and weaknesses. Faseb Journal, 22, 338–342. https://doi.org/10.1096/fj.07-9492LSF

Fu, H. Z., Wang, M. H., & Ho, Y. S. (2013). Mapping of drinking water research: A bibliometric analysis of research output during 1992-2011. Science of the Total Environment, 443, 757–765. https://doi.org/10.1016/j.scitotenv.2012.11.061

Gallinaro, D. (2014). American funding for biofuel/biorefinery research and development. Environmental Biotechnology, 1, 23–25. https://doi.org/10.14799/ebms243

Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W., & Flynn, K. J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726. https://doi.org/10.1098/rsif.2009.0322

Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507. https://doi.org/10.1007/s10811-008-9392-7

Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable & Sustainable Energy Reviews, 14(3), 1037–1047. https://doi.org/10.1016/j.rser.2009.11.004

Hemwimon, S., Pavasant, P., & Shotipruk, A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of morinda citrifolia. Separation and Purification Technology, 54, 44–50. https://doi.org/10.1016/j.seppur.2006.08.014

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102, 16569–16572. https://doi.org/10.1073/pnas.0507655102

Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. https://doi.org/10.1016/j.biortech.2011.11.133

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

Jung, K. A., Lim, S. R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190. https://doi.org/10.1016/j.biortech.2012.10.025

Kilian, O., Benemann, C. S. E., Niyogi, K. K., & Vick, B. (2011). High-efficiency homologous recombination in the oil-producing alga nannochloropsis sp. Proceedings of the National Academy of Sciences of the United States of America, 108, 21265–21269. https://doi.org/10.1073/pnas.1105861108

Lakaniemi, A.-M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from chlorella vulgaris and dunaliella tertiolecta biomass. Biotechnology for Biofuels, 4, 34. https://doi.org/10.1186/1754-6834-4-34

Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science & Technology, 43, 6475–6481. https://doi.org/10.1021/es900705j

Lavis, J. N., Robertson, D., Woodside J. M., McLeod, C. B., & Abelson, J. (2003). How can research organizations more effectively transfer research knowledge to decision makers? Milbank Quarterly, 81(2), 221–248. https://doi.org/10.1111/1468-0009.t01-1-00052

Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101. https://doi.org/10.1016/j.biombioe.2012.06.034

Lee, D.-H. (2016). Levelized cost of energy and financial evaluation for biobutanol, algal biodiesel and biohydrogen during commercial development. International Journal of Hydrogen Energy, 41, 21583–21599. https://doi.org/10.1016/j.ijhydene.2016.07.242

Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008a). Effects of nitrogen sources on cell growth and lipid accumulation of green alga neochloris oleoabundans. Applied Microbiology and Biotechnology, 81, 629–636. https://doi.org/10.1007/s00253-008-1681-1

Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008b). Biofuels from microalgae. Biotechnology Progress, 24, 815–820. https://doi.org/10.1021/bp070371k

Liang, K., Zhang, Q., & Cong, W. (2012). Enzyme-assisted aqueous extraction of lipid from microalgae. Journal of Agricultural and Food Chemistry, 60, 11771–11776. https://doi.org/10.1021/jf302836v

Liang, Y. N., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049. https://doi.org/10.1007/s10529-009-9975-7

Lowrey, J., Brooks, M. S., & McGinn, P. J. (2015). Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges – a critical review. Journal of Applied Phycology, 27, 1485–1498. https://doi.org/10.1007/s10811-014-0459-3

Mao, G. Z., Zou, H. Y., Chen, G. Y., Du, H. B., & Zuo, J. (2015). Past, current and future of biomass energy research: A bibliometric analysis. Renewable & Sustainable Energy Reviews, 52, 1823–1833. https://doi.org/10.1016/j.rser.2015.07.141

Marzi, G., Dabic, M., Daim, T., & Garces, E. (2017). Product and process innovation in manufacturing firms: A 30-year bibliometric analysis. Scientometrics, 113, 673–704. https://doi.org/10.1007/s11192-017-2500-1

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews, 14, 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Meng, X., Yang, J. M., Xu, X., Zhang, L., Nie, Q. J., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34, 1–5. https://doi.org/10.1016/j.renene.2008.04.014

Milledge, J. J., & Heaven, S. (2012). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12, 165–178. https://doi.org/10.1007/s11157-012-9301-z

Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable & Sustainable Energy Reviews, 43, 961–972. https://doi.org/10.1016/j.rser.2014.11.052

Nadri, H., Rahimi, B., Timpka, T., & Sedghi, S. (2017). The top 100 articles in the medical informatics: A bibliometric analysis. Journal of Medical Systems, 41. https://doi.org/10.1007/s10916-017-0794-4

Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., de Souza, C. O., Vich, D. V., de Carvalho, G. C., & Nascimento, M. A. (2013). Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6, 1–13. https://doi.org/10.1007/s12155-012-9222-2

Nielsen, H. B., & Heiske, S. (2011). Anaerobic digestion of macroalgae: Methane potentials, pre-treatment, inhibition and co-digestion. Water Science and Technology, 64, 1723–1729. https://doi.org/10.2166/wst.2011.654

Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37, 52–68. https://doi.org/10.1016/j.pecs.2010.01.003

Obeid, F., Thuy Chu, V., Brown, R., & Rainey, T. (2019). Nitrogen and sulphur in algal biocrude: A review of the htl process, upgrading, engine performance and emissions. Energy Conversion and Management, 181, 105–119. https://doi.org/10.1016/j.enconman.2018.11.054

Ohba, N., Nakao, K., Isashiki, Y., & Ohba, A. (2007). The 100 most frequently cited articles in ophthalmology journals. Archives of Ophthalmology, 125, 952–1960. https://doi.org/10.1001/archopht.125.7.952

Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by nannochloropsis sp. Applied Microbiology and Biotechnology, 90, 1429–1441. https://doi.org/10.1007/s00253-011-3170-1

Palomo, J., Figueroa-Domecq, C., & Laguna P. (2017). Women, peace and security state-of-art: A bibliometric analysis in social sciences based on scopus database. Scientometrics, 113, 123–148. https://doi.org/10.1007/s11192-017-2484-x

Piloto-Rodriguez, R., Sanchez-Borroto, Y., Melo-Espinosa, E. A., & Verhelst, S. (2017). Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview. Renewable & Sustainable Energy Reviews, 69, 833–842. https://doi.org/10.1016/j.rser.2016.11.015

Pires, J. C. M. (2017). Cop21: The algae opportunity? Renewable & Sustainable Energy Reviews, 79, 867–877. https://doi.org/10.1016/j.rser.2017.05.197

Potts, T., Du, J., Paul, M., May, P., Beitle, R., & Hestekin, J. (2012). The production of butanol from jamaica bay macro algae. Environmental Progress & Sustainable Energy, 31, 29–36. https://doi.org/10.1002/ep.10606

Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable & Sustainable Energy Reviews, 24, 159–171. https://doi.org/10.1016/j.rser.2013.03.034

Ramachandra, T. V., & Hebbale, D. (2020). Bioethanol from macroalgae: Prospects and challenges. Renewable & Sustainable Energy Reviews, 117, 109479. https://doi.org/10.1016/j.rser.2019.109479

Rao, P. S., Tarwade, S. J., & Sarma, K. S. R. (1980). Seaweed as source of energy. 1: Effect of a specific bacterial strain on biogas production. Botanica Marina, 23, 599–601.

Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing–A review. Renewable & Sustainable Energy Reviews, 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063

Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable & Sustainable Energy Reviews, 44, 20–36. https://doi.org/10.1016/j.rser.2014.12.013

Sathish, A., & Sims, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647. https://doi.org/10.1016/j.biortech.2012.05.118

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43. https://doi.org/10.1007/s12155-008-9008-8

Scranton, M. A., Ostrand, J. T., Fields, F. J., & Mayfield, S. P. (2015). Chlamydomonas as a model for biofuels and bio-products production. Plant Journal, 82, 523–531. https://doi.org/10.1111/tpj.12780

Show, K. Y., Yan, Y. G., Ling, M., Ye, G. X., Li, T., & Lee, D. J. (2018). Hydrogen production from algal biomass – Advances, challenges and prospects. Bioresource Technology, 257, 290–300. https://doi.org/10.1016/j.biortech.2018.02.105

Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416. https://doi.org/10.1016/j.biotechadv.2009.03.001

Singh, J., & Cu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable & Sustainable Energy Reviews, 14, 2596–2610. https://doi.org/10.1016/j.rser.2010.06.014

Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024

Smith, D. R. (2008). Citation indexing and highly cited articles in the Australian Veterinary Journal. Australian Veterinary Journal, 86, 337–339. https://doi.org/10.1111/j.1751-0813.2008.00330.x

Su, Y. J., Song, K. H., Zhang, P. D., Su, Y. Q., Cheng, J., & Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable & Sustainable Energy Reviews, 74, 402–411. https://doi.org/10.1016/j.rser.2016.12.078

Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable & Sustainable Energy Reviews, 16, 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047

Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable & Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026

Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

Tian, C. Y., Li, B. M., Liu, Z. D., Zhang, Y. H., & Lu, H. F. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable & Sustainable Energy Reviews, 38, 933–950. https://doi.org/10.1016/j.rser.2014.07.030

van Beilen, J. B. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioproducts & Biorefining-Biofpr, 4, 41–52. https://doi.org/10.1002/bbb.193

van Eck, N. J., & Waltman, L. (2010). Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wang, B., Li, Y. Q., Wu, N., & Lan, C. Q. (2008). Co2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718. https://doi.org/10.1007/s00253-008-1518-y

White, R. L., & Ryan, R. A. (2015). Long-term cultivation of algae in open-raceway ponds: Lessons from the field. Industrial Biotechnology, 11, 213–220. https://doi.org/10.1089/ind.2015.0006

Xu, D. H., Lin, G. K., Guo, S. W., Wang, S. Z., Guo, Y., & Jing, Z. F. (2018). Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review. Renewable & Sustainable Energy Reviews, 97, 103–118. https://doi.org/10.1016/j.rser.2018.08.042

Zeng, X. H., Danquah, M. K., Chen, X. D., & Lu, Y. H. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable & Sustainable Energy Reviews, 15(6), 3252–3260. https://doi.org/10.1016/j.rser.2011.04.014

Zhang, S., Mao, G. Z., Crittenden, J., Liu, X., & Du, H. B. (2017). Groundwater remediation from the past to the future: A bibliometric analysis. Water Research, 119, 114–125. https://doi.org/10.1016/j.watres.2017.01.029

Zhang, Y., Su, H., Zhong, Y., Zhang, C., Shen, Z., Sang, W., Yan, G., & Zhou, X. (2012). The effect of bacterial contamination on the heterotrophic cultivation of chlorella pyrenoidosa in wastewater from the production of soybean products. Water Research, 46, 5509–5516. https://doi.org/10.1016/j.watres.2012.07.025

Zhu, L. (2015). Microalgal culture strategies for biofuel production: A review. Biofuels Bioproducts & Biorefining-Biofpr, 9, 801–814. https://doi.org/10.1002/bbb.1576

Zhu, L. D., & Ketola, T. (2012). Microalgae production as a biofuel feedstock: Risks and challenges. International Journal of Sustainable Development and World Ecology, 19, 268–274. https://doi.org/10.1080/13504509.2011.636083

Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47, 4294–4302. https://doi.org/10.1016/j.watres.2013.05.004