Share:


Impact of fallow on soil health in Mokokchung district, Nagaland, India

    Wati Temjen Affiliation
    ; Maibam Romeo Singh Affiliation
    ; Tali Jungla Affiliation

Abstract

Two sites were selected from the district of Mokokchung, Nagaland viz., Forest Regeneration Site (FRS) and Shifting Cultivation Site (SCS). At FRS, soil pH ranged from 5.00±0.13–5.50±0.04, soil moisture 35.44±1.09–53.39±0.84%, soil temperature 14.33±0.47–23.83±0.23 °C, soil organic carbon 2.20±0.08–3.03±0.02% and available nitrogen 424.48±6.73– 547.46±2.10 Kg/ha. At SCS, soil pH ranged from 5.94±0.24–6.53±0.02, soil moisture 30.32±2.64–45.72±0.98%, soil temperature 17.83±0.62–26.1±0.08 °C, soil organic carbon 1.67±0.29–2.34±0.08% and available nitrogen 324.16±8.42– 443.20±1.06 Kg/ha. Significant correlation between soil temperature, pH, soil moisture and available nitrogen was observed at FRS, while correlation of soil moisture and pH was observed at SCS. A total of 21 fungal species belonging to 13 genera were identified from the two sites. FRS had more fungal diversity than SCS. The genus Aspergillus was dominant in both the studied sites. The study observed the detrimental effect of the shifting cultivation on soil health and highlights the need for monitoring and rectification to preserve soil health.

Keyword : land use, soil quality, shifting cultivation, Jhum fallow, landscape management, Nagaland

How to Cite
Temjen, W., Singh, M. R., & Jungla, T. (2021). Impact of fallow on soil health in Mokokchung district, Nagaland, India. Journal of Environmental Engineering and Landscape Management, 29(4), 410–417. https://doi.org/10.3846/jeelm.2021.15831
Published in Issue
Nov 30, 2021
Abstract Views
640
PDF Downloads
515
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arevalo, C., Chang, S. X., Bhatti, J. S., & Sidders, D. (2012). Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the parkland region of Alberta, Canada. Soil Science Society of American Journal, 76(1), 241–251. https://doi.org/10.2136/sssaj2011.0126

Bruce, J. P., Frome, M., Haites, E., Janzen, H. H., Lal, R., & Paustian, K. (1999). Carbon sequestration in soils. Journal of Soil and Water Conservation, 54(1), 382–389.

Campbell, C. A., Zentner, R. P., Janzen, J. J., & Bowren. K. E. (1990). Crop rotation studies on the Canadian Prairies (Publ. No. 184/E). Canadian Gov. Publ. Centre, Supply & Services Canada, Hull, QC.

Chang, R. Y., Fu, B. J., Liu, G. H., & Liu, S. G. (2011). Soil carbon sequestration potential for “Grain for Green” project in Loess Plateau, China. Environmental Management, 48(6), 1158–1172. https://doi.org/10.1007/s00267-011-9682-8

Dadhwal, K. S., Mandal, D., Srimali, S. S., Dhyani, S. K., Mohan, S. C., & Raizada, A. (2011). Landscape-scale soil quality assessment under different land use systems in north-western hilly region. Indian Journal of Soil Conservation, 39(2), 128–135.

Dar, M. A., Wani, J. A., Raina, S. K., Bhat, M. Y., Malik, M. A., & Najar, G. R. (2012). Effect of altitude and depth on available nutrients in pear orchard soils of Kashmir. Agropedology, 22(2), 115–118.

Dar, Z. A., Humaira, Q., Ahmad, M. S., Bilal, B., & Amin, A. (2018). Assessment of physico-chemical parameters of forest soil of Hirpora Wildlife Sanctuary, Kashmir. International Journal of Advance Research in Science and Engineering, 7(4), 46–56.

Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P., & Swee­ney, S. (2013). Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110, 1–7. https://doi.org/10.1016/j.catena.2013.06.016

Devi, N. L., & Choudhury, B. U. (2013). Soil fertility status in relation to fallow cycles and land use practices in shifting cultivated areas of Chandel district Manipur, India. Journal of Agriculture and Veterinary Sciences, 4(4), 1–9. https://doi.org/10.9790/2380-0440109

Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Steward (Eds.), Defining soil quality for a sustainable environment. Soil Science Society of America, Inc. https://doi.org/10.2136/sssaspecpub35.c1

Duguma, B., Gockowski, J., & Bakala, J. (2001). Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: Challenges and opportunities. Agroforestry Systems, 51(3), 77–188. https://doi.org/10.1023/A:1010747224249

Gillman, J. C. (1957). A manual of soil fungi (2nd rev. ed.). Oxford and IBH Publishing Company (Indian reprint) Calcutta, Bombay, New Delhi.

Gray, S. B., Classen, A. T., Kardol, P., Yermakov, Z., & Michael, M. R. (2011). Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem. Soil Science Society of America Journal, 75(6), 2217–2226. https://doi.org/10.2136/sssaj2011.0135

Gupta, R. D., Bhardwaj, K. R., Morwan, B. C., & Tripathi, B. R. (1986). Occurrences of phosphate dissolving bacteria in soils of North Hymalatas under varying biosequence and climosequence. Journal of Indian Society of Soil Science, 34, 498−504.

Hume, A., Chen, H. Y., Taylor, A. R., Kayahara, G. J., & Man, R. (2016). Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada. Forest Ecology and Management, 369, 1–9. https://doi.org/10.1016/j.foreco.2016.03.033

Jena, S. K., Tayung, K., Rath, C. C., & Parida, D. (2015). Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India. Brazilian Journal of Microbiology, 46(1), 85–96. https://doi.org/10.1590/S1517-838246120131367

Jenkins, A. (2005). Soil fungi. In Soil biology basics. Information series. NSW Department of Primary Industries. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0020/41645/Soil_fungi.pdf

Jones, O. R., & Popham. T. W. (1997). Cropping and tillage practices for dry land grain production in the Southern High Plains. Agronomy Journal, 89(2), 222–232. https://doi.org/10.2134/agronj1997.00021962008900020012x

Karlen, D. L., Varvel, G. E., Bullock, D. G., & Cruse, R. H. (1994). Crop rotations for the 21st century. Advances in Agronomy, 53, 1–45. https://doi.org/10.1016/S0065-2113(08)60611-2

Kaushal, M., Swennen, R., & Mahuku, G. (2020). Unlocking the microbiome communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and non-stressed conditions. Microorganisms, 8(3), 443. https://doi.org/10.3390/microorganisms8030443

Kumar, P. K. R., Hemanth, G., Niharika, P. S., & Kolli, S. K. (2015). Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam district. International Journal of Advances in Pharmacy, Biology and Chemistry, 4(2), 484–490. http://www.ijapbc.com/files/23-06-15/30-4241.pdf

Lalmuansangi, Vanlalliantluanga, A., & Thachunglura, V. L. (2019). Assessment of seasonal variation in soil characteristics with in the surrounding area of Kolasib solid Waste Dumping Ground. International Journal of Science and Research, 10(1), 1117–1123. https://www.ijsr.net/archive/v10i1/SR21113203504.pdf

Liu, W., Zhang, Z., & Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in semiarid grassland. Global Change Biology, 15(1), 184–195. https://doi.org/10.1111/j.1365-2486.2008.01728.x

Maithani, B. P. (2005). Shifting cultivation in North-East India: Policy, issues and options. Mittal Publications.

Mertz, O. (2002). The relationship between length of fallow and crop yields in shifting cultivation: A rethinking. Agroforestry Systems, 55(2), 149–159. https://doi.org/10.1023/A:1020507631848

Mertz, O., Padoch, C., Fox, J., Cramb, R. A., Leisz, S. J., Lam, N. I., & Vien, T. D. (2009). Swidden change in Southeast Asia: Understanding causes and consequences. Human Ecology, 37(3), 259–264. https://doi.org/10.1007/s10745-009-9245-2

Miah, S., Dey, S., & Sirajul Haque, S. M. (2010). Shifting cultivation effects on soil fungi and bacterial population in Chittagong Hill Tracts, Bangladesh. Journal of Forestry Research, 21(3), 311−318. https://doi.org/10.1007/s11676-010-0076-1

Mizra, A. N., & Patil, S. S. (2020). Assessment of seasonal variation in physicochemical characteristics of the soil at Gautala reserve forest (M.s.), India. Current World Environment, 15(2), 289–303. https://doi.org/10.12944/CWE.15.2.17

Nagmani, A., Kunwar, I. K., & Manoharachary, C. (2006). Hand book of soil Fungi. I.K. International Publishing House.

Nielsen, D. C., & Calderón, F. (2011). Fallow effects on soil. In J. L. Hatfield & T. J. Sauer (Eds.), Soil management: Building a stable base for agriculture (pp. 287–300). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/2011.soilmanagement.c19

Nielsen, D. C., Vigil, M. F., Anderson, R. L., Bowman, R. A., Benjamin, J. G., & Halvorson, A. D. (2002). Cropping system influence on planting water content and yield of winter wheat. Agronomy Journal, 94(5), 962–967. https://doi.org/10.2134/agronj2002.0962

Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Advances in Plants and Agricultural Research, 8(1), 34–37. https://doi.org/10.15406/apar.2018.08.00288

Perrone, G., Stea, G., Epifani, F., Varga, J., Frisvad, J. C., & Samson, A. R. (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biology, 115(11), 1138–1150. https://doi.org/10.1016/j.funbio.2011.07.008

Shiek, M. A., Kumar, M., & Bussman, R. W. (2009). Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 4, 6. https://doi.org/10.1186/1750-0680-4-6

Siles, J. A., Cajthaml, T., Minerbi, S., & Margesin, R. (2016). Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiology Ecology, 92(3), 1–12. https://doi.org/10.1093/femsec/fiw008

Singh, P. K., & Jamir, A. (2017). Comparative study of soil fertility status of direct seeded and transplanted rice under Kohima district of Nagaland. Journal of Pharmacognosy and Phytochemistry, 6(6S), 64–68.

Singh, P. K., & Munth, H. (2013). Fertility status of soil under forest and cultivated land use system of Nagaland. Asian Journal of Soil Science, 8(2), 470–475. http://researchjournal.co.in/upload/assignments/8_470-475.pdf

Smyth, J. T. (2012). Soil acidity and liming. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences: Resource management and environmental impacts (2nd ed.) (pp. 373–379). CRS Press.

Tasung, A., & Ahmed, N. (2017). Effect of different land use system and altitude on soil organic carbon and soil fertility of Siang river basin in Arunachal Pradesh, India. Journal of Crop and Weed, 13(3), 126–134. https://www.cropandweed.com/archives/2017/vol13issue3/13-3-25.pdf

Tiessen, H., Cuevas, E., & Chacon, P. (1994). The role of soil organic matter in sustaining soil fertility. Nature, 371, 783–785. https://doi.org/10.1038/371783a0

Unger, P. W., Stewart, B. A., Parr, J. F., & Singh, R. P. (1991). Crop residue management and tillage methods for conserving soil and water in semi-arid regions. Soil & Tillage Research, 20(2), 219–240. https://doi.org/10.1016/0167-1987(91)90041-U

Van N, M., Mulyoutami, E., Sakuntaladewi, N., & Agus, F. (2008). Swiddens in transition: Shifted perceptions on shifting cultivators in Indonesia (Occasional Paper no. 9). World Agroforestry Centre.

Waksman, S. A. (1921). Method for counting the number of fungi in the soil. Journal of Bacteriology, 7(3), 339–341. https://doi.org/10.1128/jb.7.3.339-341.1922

Walkley, A., & Armstrong Black, I. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

Webster, J., & Weber, R. W. S. (2007). Introduction to fungi (3rd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511809026

Wubie, M. A. (2013). Impacts of land use system on soil properties and fertility status in the Mizewa watershed of lake Tana basin, North Western Ethiopia. International Journal of Research in Commerce, Economics & Management, 3(9), 120–124.

Xu, C., Xiang, W., Gou, M., Chen, L., Lei, P., Fang, X., Deng, X., & Shuai, O. (2018). Effects of forest restoration on soil carbon, nitrogen, phosphorus, and their stoichiometry in Hunan, Southern China. Sustainability, 10(6), 1874. https://doi.org/10.3390/su10061874

Ziegler, A. D., Bruun, T. B., Guardiola-Claramonte, M., Giambelluca, T. W., Lawrence, D., & Lam, N. T. (2009). Environmental consequences of the demise in Swidden cultivation in montane mainland Southeast Asia: Hydrology and geomorphology. Human Ecology, 37(3), 361–373. https://doi.org/10.1007/s10745-009-9258-x

Zodinpuii, B., Lalnuntluanga, & Lalthanzara, H. (2016). Impact of shifting cultivation on soil organic carbon in tropical hilly terrain of Mizoram, India. Science Vision, 16(3), 135–143. http://oaji.net/articles/2017/1315-1494504034.pdf