Effect of moisture on nitrogen dioxide formation in laminar flame of natural gas
Abstract
The paper contains the results of experimental studies of the effect of moisture on nitrogen dioxide formation and on oxidation of NO to NO2 in laminar premixed flame of natural gas. The water vapor is shown to be the third very influential participant, along with fuel and oxidizer, in the combustion process. Injection of moisture into the combustion zone has an effect due to the insertion of additional quantities of HO2- and OH– radicals into the process, which contributes to the intensification of the oxidation of NO to NO2. Introduction of the concept of the “excess moisture ratio” in the combustion process is proposed. The studies were executed at the laboratory installation in conditions of formation of the V-shaped laminar flame of natural gas behind a transverse cylindrical steel stabilizer, with determining the concentrations of flue gas components.
Keyword : burning process, nitrogen dioxide, moisture, peroxide radical, air pollution
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
European Parliament, & Council of the European Union. (2010). Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0075
European Parliament, & Council of the European Union. (2015). Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015L2193
Glarborg, P., Miller, J. A., Ruscic, B., & Klippenstein, S. J. (2018). Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 67, 31–68. https://doi.org/10.1016/j.pecs.2018.01.002
Göke, S., & Paschereit, C.O. (2013). Influence of steam dilution on nitrogen oxide formation in premixed methane / hydrogen flames. Journal of Propulsion and Power, 29(1), 249–260. https://doi.org/10.2514/1.B34577
Kondrat’yev, V. N. (1970). Konstanty skorosti gazofaznykh reaktsiy. Spravochnik. Nauka.
Lamoureux, N., El Merhubi, H., Pillier, L., de Persis, S., & Desgroux, P. (2016). Modeling of NO formation in low pressure premixed flames. Combustion and Flame, 163, 557–575. https://doi.org/10.1016/j.combustflame.2015.11.007
Lukoshyavichus, V. P., Tsiryul’nikov, L. M., & Shvenchanas, P. P. (1986). O faktorakh, vliyayushchikh na effektivnost’ podavleniya obrazovaniya okislov azota vvodom vlagi v zonu goreniya. Teploenergetika, (7), 9–12.
Navrodska, R., Fialko, N., Presich, G., Gnedash, G., Alioshko, S., & Shevcuk, S. (2019). Reducing nitrogen oxide emissions in boilers at moistening of blowing air in heat recovery systems. E3S Web of Conferences, 100, 00055. https://doi.org/10.1051/e3sconf/201910000055
Primak A. V., & Sigal, A. I. (1992). Combined technology to reduce nitrogen oxide formation, to clean gas and recover waste heat (No. 1061U/92). Vneshtorgizdat.
Roslyakov, P. V. (1988). Mekhanizm vliyaniya dobavok vody i vlagosoderzhaniya topliva na obrazovanie termicheskikh i toplivnykh oksidov azota. Izvestiya vuzov Energetika, (7), 59–63.
Shahpouri, S., & Houshfar, E. (2019). Nitrogen oxides reduction and performance enhancement of combustor with direct water injection and humidification of inlet air. Clean Technologies and Environmental Policy, 21(3), 667–683. https://doi.org/10.1007/s10098-019-01666-4
Sigal, A. (1994). Evaluation of possibilities to decrease the nitrogen oxides emission to atmosphere with the fuel burning products. Vilniaus technikos universiteto mokslo darbai. Aplinkos apsauga, (2), 42–46.
Sigal, A. I. (2004). Vliyanie vlagi v dut’yevom vozdukhe na effektivnost’ raboty kotlov promyshlennoy i kommunal’noy energetiki. Teploenergetika, (12), 34–37.
Sigal, A. I., & Bykorez, E. I. (2007). Vliyanie parametricheskogo ballastirovaniya na termodinamiku protsessa goreniya. Promyshlennaya teplotekhnika, 29(5), 103–109.
Sigal, A. I., & Dolinsky, A. A. (2007). The influence of moisture in air on the working efficiency of boilers in the industrial and municipal energy sectors. In N. Syred & A. Khalatov (Eds.), Advanced combustion and aerothermal technologies (pp. 331–339). Springer. https://doi.org/10.1007/978-1-4020-6515-6_25
Sigal, A. I., & Paderno, D. Yu. (1992). Primenenie amorfnyh metallicheskih splavov v kachestve materiala nasadki kontaktnyh gazoochistnykh apparatov. In Problemy promyshlennoy ekologii i bezopasnosti (p. 61). Diada.
Sigal, A. I., Panasenko, V. S., & Rudenko, V. Ya. (1984). Obrazovanie dioksida azota pri gorenii gaza i ego vozdejstvie na rasteniya. In Termicheskaya i kataliticheskaya ochistka gazovykh vybrosov v atmosferu (pp. 134–142). Naukova dumka.
Sigal, A. I., & Paderno, D. Yu. (2020). Flue gases cleaning from nitrogen oxides by additional oxidation of NO to NO2 and absorption. Thermophysics and Thermal Power Engineering, 42(1), 77–85. https://doi.org/10.31472/ttpe.1.2020.9
Sigal, I. Ya. (1988). Zashchita vozdushnogo basseyna pri szhiganii topliva. Nedra.
Sigal, I. Ya., Smikhula, A. V., & Sigal, A. I. (2019). Opyt razrabotki gorelochnykh ustroystv, topochnykh kamer i tekhnologiy snizheniya vybrosov oksidov azota pri szhiganii prirodnogo gaza v kotel’nykh agregatakh. Energotekhnologii i resursosberezhenie, (3), 70–79. https://doi.org/10.33070/etars.3.2019.07
Soroka, B. S., Kornienko, A. V., Kudryavcev, V. S., & Karabchievskaya, R. S. (2018). Sokrashchenie vybrosov oksidov azota v otkrytom fakele prirodnogo gaza pri vvode vodyanogo para v potok vozdukha goreniya. Energotekhnologii i resursosberezhenie, (2), 57–70. https://doi.org/10.33070/etars.2.2018.08
Soroka, B., & Zgurskyi, V. (2019). Power efficiency of the “wet” combustion and pollutants formation reduction. Thermophysics and Thermal Power Engineering, 41(3), 55–62. https://doi.org/10.31472/ttpe.3.2019.8