Toxicity mediated oxidative stress and its mitigation strategies in crop plants
Abstract
Oxidative stress occurs in plant due to various environmental stressors like drought, high temperature, pathogen invasion, heavy metals, pesticides etc. when plant faces these conditions, reactive oxygen species (ROS) are produced in the chloroplast, mitochondria, plasma membrane, peroxisomes, ER and cell wall due to the leakage of electrons. Depending upon its concentration the role of ROS is decided if less then it will act as a signaling molecule but if in excess it will damage the cellular machinery of plants as the production of species like free radicals would take place. Though to combat these stress plants have antioxidant defense machinery which include enzymatic and non- enzymatic which lower down the level of ROS. Through genetic engineering more tolerant plants are produced which include modification of key genes like transcription factors. In this review article the molecular physiology of plants is discussed where in the factors contributing to stress including biotic and abiotic factors and various mitigation strategies.
Keyword : ROS, antioxidants, key genes, transcription factors, chemical priming, ETC, free radicals
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmad, S., Gordon-Weeks, R., Pickett, J., & Ton, J. (2010). Natural variation in priming of basal resistance: From evolutionary origin to agricultural exploitation. Molecular Plant Pathology, 11(6), 817–827. https://doi.org/10.1111/j.1364-3703.2010.00645.x
Al-Khatib, K., & Paulsen, G. M. (1990). Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science, 30(5), 1127–1132. https://doi.org/10.2135/cropsci1990.0011183X003000050034x
Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169–183. https://doi.org/10.1016/j.biotechadv.2009.11.005
Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F., & van der Linden, G. (2018). Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant Journal, 93(4), 781–793. https://doi.org/10.1111/tpj.13800
Baillo, E. H., Kimotho, R. N., Zhang, Z., & Xu, P. (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10(10), 771. https://doi.org/10.3390/genes10100771
Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. https://doi.org/10.3389/fpls.2013.00273
Bonfante, P., & Anca, I.-A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383. https://doi.org/10.1146/annurev.micro.091208.073504
Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M., & Pérez, J. A. (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Frontiers in Plant Science, 5, 642. https://doi.org/10.3389/fpls.2014.00642
Burgyán, J. (2008). Role of silencing suppressor proteins. In G. D. Foster, I. E. Johansen, Y. Hong, & P. D. Nagy (Eds.), Methods in molecular biology: Vol. 451. Plant virology protocols (pp. 69–79). Humana Press. https://doi.org/10.1007/978-1-59745-102-4_5
Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265–272. https://doi.org/10.1016/j.tplants.2011.02.010
Canesi, L., Ciacci, C., Piccoli, G., Stocchi, V., Viarengo, A., & Gallo, G. (1998). In vitro and in vivo effects of heavy metals on mussel digestive gland hexokinase activity: The role of glutathione. Comparative Biochemistry and Physiology – C Pharmacology Toxicology and Endocrinology, 120(2), 261–268. https://doi.org/10.1016/S0742-8413(98)10004-X
Caverzan, A., Casassola, A., & Patussi Brammer, S. (2016). Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In A. K. Shanker & Ch. Shanker (Eds.), Abiotic and biotic stress in plants – Recent advances and future perspectives. IntechOpen. https://doi.org/10.5772/61368
Csorba, T., Kontra, L., & Burgyán, J. (2015). Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479–480, 85–103. https://doi.org/10.1016/j.virol.2015.02.028
De Almeida, A. A. F., Valle, R. R., Mielke, M. S., & Gomes, F. P. (2007). Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Brazilian Journal of Plant Physiology, 19(2). https://doi.org/10.1590/S1677-04202007000200001
Deyashi, M., & Chakraborty, S. B. (2016). Pesticide induced oxidative stress and the role of antioxidant defense system in animal body. Harvest, 2, 1–14.
Duan, C. G., Fang, Y. Y., Zhou, B. J., Zhao, J. H., Hou, W. N., Zhu, H., Ding, S. W., & Guo, H. S. (2012). Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein. Plant Cell, 24, 259–27. https://doi.org/10.1105/tpc.111.092718
Dumont, S., & Rivoal, J. (2019). Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Frontiers in Plant Science, 10, 166. https://doi.org/10.3389/fpls.2019.00166
El-Kafafi, E., El-Demerdash, F. M., Helaly, A. A., & El-Sheikha, M. (2011). Genotypic effects, oxidative stress and tolerance mechanisms induced by cadmium in two Lactuca sativa cultivars. Journal of Agricultural Chemistry and Biotechnology, 2(7), 139–153. https://doi.org/10.21608/jacb.2011.57083
Gallego, S. M., Benavídes, M. P., & Tomaro, M. L. (1996). Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science, 121(2), 151–159. https://doi.org/10.1016/S0168-9452(96)04528-1
Garcia-Ruiz, H. (2018). Susceptibility genes to plant viruses. Viruses, 10(9), 484. https://doi.org/10.3390/v10090484
Glorieux, C., & Calderon, P. B. (2017). Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry, 398(10), 1095–1108. https://doi.org/10.1515/hsz-2017-0131
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023
Hammond-Kosack, K. E., & Jones, J. D. G. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8, 1773–1791. https://doi.org/10.1105/tpc.8.10.1773
Hasanuzzaman, M., Nahar, K., & Fujit, M. (2013a). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In K. Vahdati (Ed.), Abiotic stress – plant responses and applications in agriculture. IntechOpen. https://doi.org/10.5772/54833
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013b). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23, 249–268. https://doi.org/10.1007/s12298-017-0422-2
Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M., & Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6, 420. https://doi.org/10.3389/fpls.2015.00420
Humphreys, C. P., Franks, P. J., Rees, M., Bidartondo, M. I., Leake, J. R., & Beerling, D. J. (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications, 1, 103. https://doi.org/10.1038/ncomms1105
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329. https://doi.org/10.1038/nature05286
Kai, M., Effmert, U., & Piechulla, B. (2016). Bacterial-plant-interactions: Approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Frontiers in Microbiology, 7, 108. https://doi.org/10.3389/fmicb.2016.00108
Kalisz, A., Sękara, A., Pokluda, R., Jezdinský, A., Neugebauerová, J., Slezák, K. A., & Kunicki, E. (2019). Sequential response of sage antioxidant metabolism to chilling treatment. Molecules, 24(22), 4087. https://doi.org/10.3390/molecules24224087
Khaldi, F., Menaiaia, K., Ouartane, N., & Grara, N. (2019). Biochemical and enzymatic characterization of macrophyte plant phragmites australis affected by zinc oxide. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 20(2), 237–252.
Khan, A., Khan, A. L., Muneer, S., Kim, Y.-H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10, 1429. https://doi.org/10.3389/fpls.2019.01429
Klotz, L. O., & Steinbrenner, H. (2017). Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biology, 13, 646–654. https://doi.org/10.1016/j.redox.2017.07.015
Klotz, L. O., Sánchez-Ramos, C., Prieto-Arroyo, I., Urbánek, P., Steinbrenner, H., & Monsalve, M. (2015). Redox regulation of FOXO transcription factors. Redox Biology, 6, 51–72. https://doi.org/10.1016/j.redox.2015.06.019
KrishnaMurthy, A., & Rathinasabapathi, B. (2013). Oxidative stress tolerance in plants: Novel interplay between auxin and reactive oxygen species signaling. Plant Signaling and Behavior, 8(10), e25761. https://doi.org/10.4161/psb.25761
Lata, R., Chowdhury, S., Gond, S. K., & White, J. F. (2018). Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology, 66(4), 268–276. https://doi.org/10.1111/lam.12855
Lushchak, V. I., Matviishyn, T. M., Husak, V. V., Storey, J. M., & Storey, K. B. (2018). Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101–1136. https://doi.org/10.17179/excli2018-1710
Maiese, K. (2015). FoxO transcription factors and regenerative pathways in diabetes mellitus. Current Neurovascular Research, 12(4), 404–413. https://doi.org/10.2174/1567202612666150807112524
Mayer, A. M. (1989). Plant-fungal interactions: A plant physiologist’s viewpoint. Phytochemistry, 28(2), 311–317. https://doi.org/10.1016/0031-9422(89)80002-0
Nakahara, K. S., & Masuta, C. (2014). Interaction between viral RNA silencing suppressors and host factors in plant immunity. Current Opinion in Plant Biology, 20, 88–95. https://doi.org/10.1016/j.pbi.2014.05.004
Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090
Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., & Shinozaki, K. (2004). Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 55(3), 327–342. https://doi.org/10.1007/s11103-004-0685-1
Naylor, D., & Coleman-Derr, D. (2018). Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 8, 2223. https://doi.org/10.3389/fpls.2017.02223
Nguyen, H. C., Lin, K. H., Ho, S. L., Chiang, C. M., & Yang, C. M. (2018). Enhancing the abiotic stress tolerance of plants: From chemical treatment to biotechnological approaches. Physiologia Plantarum, 164(4), 452–466. https://doi.org/10.1111/ppl.12812
Peer, R. van, Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of Carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734. https://doi.org/10.1094/phyto-81-728
Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: Defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11, 745–760. https://doi.org/10.1038/nrmicro3120
Read, D. J., Duckett, J. G., Francis, R., Ligrone, R., & Russell, A. (2000). Symbiotic fungal associations in “lower” land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1398), 815–831. https://doi.org/10.1098/rstb.2000.0617
Regente, M., Pinedo, M., Clemente, H. S., Balliau, T., Jamet, E., & De La Canal, L. (2017). Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. Journal of Experimental Botany, 68(20), 5485–5495. https://doi.org/10.1093/jxb/erx355
Rutter, B. D., & Innes, R. W. (2017). Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiology, 173(1), 728–741. https://doi.org/10.1104/pp.16.01253
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026. https://doi.org/10.1104/pp.103.026583
Ryu, C. M., Faragt, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 100(8), 4927–4932. https://doi.org/10.1073/pnas.0730845100
Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Science, 21(4), 329–340. https://doi.org/10.1016/j.tplants.2015.11.003
Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365. https://doi.org/10.1093/jxb/53.372.1351
Shakiba, E., Edwards, J. D., Jodari, F., Duke, S. E., Baldo, A. M., Korniliev, P., McCouch, S. R., & Eizenga, G. C. (2017). Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS ONE, 12(3), e0172133. https://doi.org/10.1371/journal.pone.0172133
Shakir, S. K., Irfan, S., Akhtar, B., Rehman, S. ur, Daud, M. K., Taimur, N., & Azizullah, A. (2018). Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology, 27, 919–935. https://doi.org/10.1007/s10646-018-1916-6
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 217037. https://doi.org/10.1155/2012/217037
Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A. A., Ihsan, M., Laiq, M., Ullah, S., Fahad, S., Khan, A., Khan, A. H., Akbar, A., & Yang, X. (2019). Drought tolerance improvement in plants: An endophytic bacterial approach. Applied Microbiology and Biotechnology, 103, 7385–7397. https://doi.org/10.1007/s00253-019-10045-4
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 17(2), 113–122. https://doi.org/10.1016/j.copbio.2006.02.002
Van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753–765. https://doi.org/10.1023/A:1008638109140
Vincent, D., Rafiqi, M., & Job, D. (2020). The multiple facets of plant–fungal interactions revealed through plant and fungal secretomics. Frontiers in Plant Science, 10, 1626. https://doi.org/10.3389/fpls.2019.01626
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14. https://doi.org/10.1007/s00425-003-1105-5
Wang, Y., Zhou, Y., & Graves, D. T. (2014). FOXO transcription factors: Their clinical significance and regulation. BioMed Research International, 2014, 925350. https://doi.org/10.1155/2014/925350
Waraich, E. A., Ahmad, R., Saifullah, Ashraf, M. Y., & Ehsanullah. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764–777.
Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565. https://doi.org/10.1038/35107108
Wu, H., Fu, B., Sun, P., Xiao, C., & Liu, J. H. (2016). A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiology, 172, 1532–1547. https://doi.org/10.1104/pp.16.01096
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019, 9732325. https://doi.org/10.1155/2019/9732325
Yáñez-Mó, M., Siljander, P. R. M., Andreu, Z., Zavec, A. B., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiro-Da Silva, A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., … De Wever, O. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4(1), 27066. https://doi.org/10.3402/jev.v4.27066
Yang, X., Ren, Y., Sun, S., Wang, D., Zhang, F., Li, D., Li, S., & Zhou, X. (2018). Identification of the potential virulence factors and RNA silencing suppressors of mulberry mosaic dwarf-associated geminivirus. Viruses, 10(9), 472. https://doi.org/10.3390/v10090472
Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K. M., & Chandra Nayak, S. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182–207. https://doi.org/10.1093/femsre/fuv045
Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565. https://doi.org/10.3389/fmicb.2016.01565