Hydromorphological method and GIS tools with a web application to assess a semi-natural urbanised river
Abstract
River valleys are an essential element of urban space, and play an important role in the functioning of the natural environment and the recreation of city dwellers. Moreover, blue-green infrastructure facilitates healthy urban living. New technologies can contribute significantly to dissemination of messages of environmental protection. We discuss adaptation of the RHS method for presenting interactive data for river channels. Our assessment was focused on three parameters: habitat area, structure and conservation. The main parameters were described using selected indicators linked to natural and anthropogenic factors. The habitat modification score showed that the physical state of the Drwinka River was obviously modified, and the habitat quality assessment rated the stream as hydromorphological class III. The web application showed that the proposed method is suitable for creating realistic visual effects, and indicates greening areas against degraded areas.
Keyword : green-blue infrastructure, hydromorphology, interactive visualisation, landscape management, river park, urban ecosystems
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Allawi, M. F., Jaafar, O., Hamzah, F. M., Koting, S. B., Mohd, N. S. B., & El-Shafie, A. (2019). Forecasting hydrological parameters for reservoir system utilizing artificial intelligent models and exploring their influence on operation performance. Knowledge-Based Systems, 163, 907–926. https://doi.org/10.1016/j.knosys.2018.10.013
Andersson-Sköld, Y., Klingberg, J., Gunnarsson, B., Cullinane, K., Gustafsson, I., Hedblom, M., Knez, I., Lindberg, F., Sang, Å. O., Pleijel, H., Thorsson, P., & Thorsson, S (2018). A framework for assessing urban greenery’s effects and valuing its ecosystem services. Journal of Environmental Management, 205, 274–285. https://doi.org/10.1016/j.jenvman.2017.09.071
Anim, D. O., Fletcher, T. D., Vietz, G. J., Burns, M. J., & Pasternack, G. B. (2019). How alternative urban stream channel designs influence ecohydraulic conditions. Journal of Environmental Management, 247, 242–252. https://doi.org/10.1016/j.jenvman.2019.06.095
Antosiewicz, T. (2005). Park Rzeczny Drwinka (Praca Dyplomowa). Politechnika Krakowska.
Artmann, M., Kohler, M., Meinel, G., Gan, J., & Ioja, I. C. (2019). How smart growth and green infrastructure can mutually support each other – A conceptual framework for compact and green cities. Ecological Indicators, 96(Part 2), 10–22. https://doi.org/10.1016/j.ecolind.2017.07.001
Bazan-Krzywoszańska, A., Mrówczyńska, M., & Tront, S. (2019). GIS technology, 3D models and mathematical models as a tool for assessing development capabilities of flood risk land to make arrangements of municipal planning documents. Journal of Ecological Engineering, 20(1), 25–33. https://doi.org/10.12911/22998993/93866
Bernat, S. (2010). Doliny rzeczne i ich percepcja. Prace Komisji Krajobrazu Kulturowego, (13), 167–178.
Boon, P. J., Holmes, N. T., & Raven, P. J. (2010). Developing standard approaches for recording and assessing river hydromorphology: the role of the European Committee for Standardization (CEN). Aquatic Conservation, 20(S1), 55–61. https://doi.org/10.1002/aqc.1097
Bruns, A. (2009, September). From prosumer to produser: Understanding user-led content creation [Conference presentation]. Transforming Audiences 2009. London.
Central Statistical Office. (2018). Statistics Poland, Demographic Surveys Department Population. Size and structure and vital statistics in Kraków by territorial division in 2018. As of December 31. stat.gov.pl
Chung, C. K. L., Zhang, F., & Wu, F. (2018). Negotiating green space with landed interests: The urban political ecology of greenway in the Pearl River Delta, China. Antipode, 50(4), 891–909. https://doi.org/10.1111/anti.12384
Czerniawska-Kusza, I., & Szoszkiewicz, K. (2007). Biologiczna i hydromorfologiczna ocena wód płynących na przykładzie rzeki Mała Panew. Uniwersytet Opolski, Opole.
Environment Agency. (2003). River Habitat Survey in Britain and Ireland. Field Survey Guidance Manual: 2003 Version. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/311579/LIT_1758.pdf
European Parliament and the Council of the European Union. (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Official Journal, L327, 22.12.2000.
Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G., & Lafortezza, R. (2019). Urban forests, ecosystem services, green infrastructure and nature–based solutions: Nexus or evolving metaphors? Urban Forestry & Urban Greening, 37, 3–12. https://doi.org/10.1016/j.ufug.2018.02.011
Flanagin, A. J., & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72(3–4), 137–148. https://doi.org/10.1007/s10708-008-9188-y
Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Ye, A., Miao, C., & Dai, Y. (2016). Multiobjective adaptive surrogate modeling based optimization for parameter estimation of large, complex geophysical models. Water Resources Research, 52(3), 1984–2008. https://doi.org/10.1002/2015WR018230
Gonzales, R., Cardille, J. A., Parrott, L., Gaudreau, C., & Deest, G. (2009). SFMN GeoSearch: An interactive approach to the visualization and exchange of point-based ecological data. Ecological Informatics, 4(4), 196–205. https://doi.org/10.1016/j.ecoinf.2009.07.007
Guo, Y., Su, J. G., Dong, Y., & Wolch, J. (2019). Application of land use regression techniques for urban greening: An analysis of Tianjin, China. Urban Forestry & Urban Greening, 38, 11–21. https://doi.org/10.1016/j.ufug.2018.10.013
Halecki, W., Kruk, E., & Ryczek, M. (2018a). Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments. Ecological Indicators, 91, 461–469. https://doi.org/10.1016/j.ecolind.2018.03.072
Halecki, W., Kruk, E. & Ryczek, M. (2018b). Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy, 73, 363–372. https://doi.org/10.1016/j.landusepol.2018.01.041
Halecki, W. (2017). Parki rzeczne – jako forma ochrony powietrza w Miejskiej Wyspie Ciepła. Wszechświat, 118(4–6), 133–138.
Halecki, W., & Gąsiorek, M. (2015). Seasonal variability of microbial biomass phosphorus in urban soils. Science of the Total Environment, 502, 42–47. https://doi.org/10.1016/j.scitotenv.2014.09.009
Halecki, W., Stachura, T., Fudała, W., & Rusnak, M. (2019). Evaluating the applicability of MESS (matrix exponential spatial specification) model to assess water quality using GIS technique in agricultural mountain catchment (Western Carpathian). Environmental Monitoring and Assessment, 191(1), 26. https://doi.org/10.1007/s10661-018-7137-x
Hamerla, A., & Pierzchała, Ł. (2016). Hydromorphological assessment of urban river valleys of the Kłodnica catchment. Scientific Review – Engineering and Environmental Sciences, 25(71), 83–99.
Heasley, E. L., Clifford, N. J., & Millington, J. D. (2019). Integrating network topology metrics into studies of catchment-level effects on river characteristics. Hydrology and Earth System Sciences, 23(5), 2305–2319. https://doi.org/10.5194/hess-23-2305-2019
Ilnicki, P., Górecki, K., Grzybowski, M., Krzemińska, A., Lewandowski, P., & Sojka, M. (2011). Badania hydromorfologii cieków nizinnych za pomocą metody MHR. Woda – Środowisko – Obszary Wiejskie, 11(1), 97–112.
Institute of Meteorology and Water Management. (2016). National Research Institute – quality control analysis based on data from the period: 1981–2010. https://www.imgw.pl/
Ioana-Toroimac, G. (2018). Outcomes of the hydromorphology integration in the Water Framework Directive: A review based on science mapping. Journal of Environmental Management, 206, 1135–1144. https://doi.org/10.1016/j.jenvman.2017.11.078
Iosifescu-Enescu, I., Hugentobler, M., & Hurni, L. (2010). Web cartography with open standards – A solution to cartographic challenges of environmental management. Environmental Modelling & Software, 25(9), 988–999. https://doi.org/10.1016/j.envsoft.2009.10.017
Jankowski, W. (2001). Naukowe podstawy i przyszłość korytarzy ekologicznych w Polsce. Przegląd Przyrodniczy, XII(3–4/01).
Jusik, Sz., & Szoszkiewicz, K. (2009). Zastosowanie systemu River Habitat Survey (RHS) w ocenie hydromorfologii wód płynących w Polsce. Wiadomości Melioracyjne i Łąkarskie, 3(422), 106–110.
Kaleta, J. T., Puszkarewicz, A., & Papciak, D. (2019). The influence of the city of Przemyśl on the quality of water in the San River. Journal of Ecological Engineering, 20(1), 76–83. https://doi.org/10.12911/22998993/92895
Karahan, H., Iplikci, S., Yasar, M., & Gurarslan, G. (2014). River flow estimation from upstream flow records using support vector machines. Journal of Applied Mathematics, 2014, 714213. https://doi.org/10.1155/2014/714213
Kijowska, M., & Wiejaczka, Ł. (2011). Zastosowanie metody RHS w badaniach stanu hydromorfologicznego rzeki górskiej powyżej i poniżej zbiornika retencyjnego (na przykładzie Ropy w Beskidzie Niskim). Przegląd Geograficzny, 83(3), 343–359. https://doi.org/10.7163/PrzG.2011.3.3
Kim, K. G. (2019). Development of an integrated smart water grid model as a portfolio of climate smart cities. Journal of Smart Cities, 3(1), 23–34.
Kondracki, J. (2011). Geografia regionalna Polski. Wydawnictwo Naukowe. PWN.
Król, K. (2015a). Evaluation of selected techniques of creating interactive location maps of spatial objects. Acta Scientarium Polonorum Formatio Circumiectus, 14(4), 49–59. https://doi.org/10.15576/ASP.FC/2015.14.4.49
Król, K. (2015b). Presentation of objects and spatial phenomena on the Internet map by means of net resource address parameterization technique. Geomatics, Landmanagement and Landscape, 4, 35–47.
Król, K. (2016). Data presentation on the map in Google Charts and jQuery JavaScript technologies. Geomatics, Landmanagement and Landscape, 2, 91–106. https://doi.org/10.15576/GLL/2016.2.91
Leonard, L., Miles, B., Heidari, B., Lin, L., Castronova, A. M., Minsker, B., Lee, L., Scaife, C., & Band, L. E. (2019). Development of a participatory Green Infrastructure design, visualization and evaluation system in a cloud supported jupyter notebook computing environment. Environmental Modelling & Software, 111, 121–133. https://doi.org/10.1016/j.envsoft.2018.10.003
Li, W., Wang, D., Li, H., Wang, J., Zhu, Y., & Yang, Y. (2019). Quantifying the spatial arrangement of underutilized land in a rapidly urbanized rust belt city: The case of Changchun City. Land Use Policy, 83, 113–123. https://doi.org/10.1016/j.landusepol.2019.01.032
Liu, C., Hu, Y., Yu, T., Xu, Q., Liu, C., Li, X., & Shen, C. (2019a). Optimizing the water treatment design and management of the artificial lake with water quality modeling and surrogate– based approach. Water, 11(2), 391. https://doi.org/10.3390/w11020391
Liu, S., Pan, G., Zhang, Y., Xu, J., Ma, R., Shen, Z., & Dong, S. (2019b). Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient. Ecotoxicology and Environmental Safety, 181, 435–444. https://doi.org/10.1016/j.ecoenv.2019.04.060
Miao, Z., Pan, L., Wang, Q., Chen, P., Yan, C., & Liu, L. (2019). Research on urban ecological network under the threat of road networks – A case study of Wuhan. ISPRS International Journal of Geo-Information, 8(8), 342. https://doi.org/10.3390/ijgi8080342
Mokwe-Ozonzeadi, N., Foster, I., Valsami-Jones, E., & McEldowney, S. (2019). Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. Journal of Soils and Sediments, 19(2), 946–963. https://doi.org/10.1007/s11368-018-2078-0
Møller, M. S., Olafsson, A. S., Vierikko, K., Sehested, K., Elands, B., Buijs, A., & van den Bosch, C. K. (2019). Participation through place-based e-tools: A valuable resource for urban green infrastructure governance? Urban Forestry & Urban Greening, 40, 245–253. https://doi.org/10.1016/j.ufug.2018.09.003
Mor, J. R., Dolédec, S., Acuña, V., Sabater, S., & Muñoz, I. (2019). Invertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditions. Environmental Pollution, 252, 483–492. https://doi.org/10.1016/j.envpol.2019.05.114
Obidziński, A., & Żelazo, J. (2009). Inwentaryzacja i waloryzacja przyrodnicza. Wydawnictwo SGGW.
Operacz, A., Wąsik, E., Hajduga, M., & Chmielowski, K. (2018). Therapeutic water in the Poprad Valley – the newest development in the Polish Outer Carpathians. Polish Journal of Environmental Studies, 27(3), 1207–1217. https://doi.org/10.15244/pjoes/76036
Osowska, J., & Kalisz, J. (2011). Wykorzystanie metody River Habitat Survey do waloryzacji hydromorfologicznej rzeki Kłodnicy. Górnictwo i Geologia, 6(3), 141–156.
Raczyńska, M., Grzeszczyk–Kowalska, A., & Raczyński, M. (2012). Zastosowanie metody River Habitat Survey do waloryzacji hydromorfologicznej cieku Osówka (Pomorze Zachodnie). Inżynieria Ekologiczna, 30, 266–276.
Rozenau-Rybowicz, A., & Baranowska-Janota, M. (2007). Korytarze ekologiczne w planowaniu przestrzennym. Problemy Rozwoju Miast, 4(1–2), 132–142.
Sanaa, M., Pouillot, R., Vega, F. G., Strain, E., & Van Doren, J. M. (2019). GenomeGraphR: A user-friendly open-source web application for foodborne pathogen whole genome sequencing data integration, analysis, and visualization. PloS One, 14(2), e0213039. https://doi.org/10.1371/journal.pone.0213039
Song, J., & Wang, Z. H. (2016). Diurnal changes in urban boundary layer environment induced by urban greening. Environmental Research Letters, 11(11), 114018. https://doi.org/10.1088/1748-9326/11/11/114018
Speak, A., Escobedo, F. J., Russo, A., & Zerbe, S. (2018). An ecosystem service-disservice ratio: Using composite indicators to assess the net benefits of urban trees. Ecological Indicators, 95(Part 1), 544–553. https://doi.org/10.1016/j.ecolind.2018.07.048
Spilková, J., & Rypáčková, P. (2019). Prague’s community gardening in liquid times: challenges in the creation of spaces for social connection. Leisure Studies, 38(4), 468–479. https://doi.org/10.1080/02614367.2019.1588352
Stachura, T., Bedla, D., & Król, K. (2014). Zastosowanie aplikacji internetowej do prezentacji charakterystyki wybranych zbiorników wodnych i ich zlewni. Acta Scientarium Polonorum Formatio Circumiectus, 4(13), 315–326. https://doi.org/10.15576/ASP.FC/2014.13.4.315
Szoszkiewicz, K., & Gebler, D. (2012). Polska wersja systemu oceny stanu hydromorfologicznego rzek River Habitat Survey – nowe zastosowania w praktyce. Gospodarka Wodna, 4, 141–146.
Szoszkiewicz, K., Zgoła, T., Giełczewski, M., & Stelmaszczyk, M. (2009). Zastosowanie metody River Habitat Survey do waloryzacji hydromorfologicznej i oceny skutków planowanych działań renaturyzacyjnych. Nauka Przyroda Technologie, 3(3), 1–9.
Szoszkiewicz, K., Zgoła, T., Jusik, Sz., Hryc-Jusik, B., Dawson, F. H., & Raven, P. (2012). Hydromorfologiczna ocena wód płynących. Podręcznik do badań terenowych według metody River Habitat Survey w warunkach Polski. Wydawnictwo Naukowe. Bogucki, Poznań – Warrington.
Teixeira, J., Macedo, E., Fernandes, P., Bandeira, J. M., Rouphail, N., & Coelho, M. C. (2019). Assessing traffic–related environmental impacts based on different traffic monitoring applications. Transportation Research Procedia, 37, 107–114. https://doi.org/10.1016/j.trpro.2018.12.172
Tian, L., Xu, G., Fan, C., Zhang, Y., Gu, C., & Zhang, Y. (2019). Analyzing Mega City–Regions through Integrating Urbanization and Eco–Environment Systems: A case study of the Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health, 16(1), 114. https://doi.org/10.3390/ijerph16010114
Tong, J., Hu, J., Lu, Z., Sun, H., & Yang, X. (2019). The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis. Journal of Geographical Sciences, 29(9), 1578–1594. https://doi.org/10.1007/s11442-019-1678-y
Trząski, L., & Mana, V. (2008). Evaluation of hydromorphological state of river Bobrek by RHS (River Habitat Survey) method. Research Reports. Mining and Environment, 1, 53–62. https://kwartalnik.gig.eu/sites/default/files/articles/pracenaukowe-gig/2008_1_4.pdf
Tsoukalas, I., & Makropoulos, C. (2015). Multiobjective optimisation on a budget: Exploring surrogate modelling for robust multi–reservoir rules generation under hydrological uncertainty. Environmental Modelling & Software, 69, 396–413. https://doi.org/10.1016/j.envsoft.2014.09.023
Vakilifard, N., Bahri, P. A., Anda, M., & Ho, G. (2019). An interactive planning model for sustainable urban water and energy supply. Applied Energy, 235, 332–345. https://doi.org/10.1016/j.apenergy.2018.10.128
Verawaty, M., Amalia, M., Wulandari, R., & Hartina, D. M. (2019). Retention ponds pollution level monitoring in Palembang City for achieving a sustainable urban environmental health and ecosystem service. In IOP Conference Series: Earth and Environmental Science, 248, 012006. IOP Publishing. https://doi.org/10.1088/1755-1315/248/1/012006
Windsor, F. M., Pereira, M. G., Tyler, C. R., & Ormerod, S. J. (2019). Persistent contaminants as potential constraints on the recovery of urban river food webs from gross pollution. Water Research, 163, 114858. https://doi.org/10.1016/j.watres.2019.114858
Yan, Z., Teng, M., He, W., Liu, A., Li, Y., & Wang, P. (2019). Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Science of The Total Environment, 650, 335–342. https://doi.org/10.1016/j.scitotenv.2018.09.025
Yang, J., Wang, Z. H., Chen, F., Miao, S., Tewari, M., Voogt, J. A., & Myint, S. (2015). Enhancing hydrologic modelling in the coupled weather research and forecasting–urban modelling system. Boundary-Layer Meteorology, 155(1), 87–109. https://doi.org/10.1007/s10546-014-9991-6
Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup development. IEEE Internet Computing, 12(5), 44–52. https://doi.org/10.1109/MIC.2008.114
Zarzycki, J. (2009). Metodyczne i techniczne innowacje w badaniach fitosocjologicznych. Łąkarstwo w Polsce, 12, 233–247. http://www.up.poznan.pl/ptl/rocznik%20nr%2012/022.pdf
Zhou, X., Ding, Y., Wu, C., Huang, J., & Hu, C. (2019). Measuring the spatial allocation rationality of service facilities of residential areas based on internet map and location-based service data. Sustainability, 11(5), 1337. https://doi.org/10.3390/su11051337
Zieliński, P., Górniak, A., & Bralski, M. (2012). Wykorzystanie cech hydromorfologicznych do oceny stanu ekologicznego rzeki miejskiej. Inżynieria Ekologiczna, 29, 246–256. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPWR-0005-0024
Zischg, A. P., Felder, G., Mosimann, M., Röthlisberger, V., & Weingartner, R. (2018). Extending coupled hydrological–hydraulic model chains with a surrogate model for the estimation of flood losses. Environmental Modelling & Software, 108, 174–185. https://doi.org/10.1016/j.envsoft.2018.08.009