Ranking of sustainability criteria for industrial symbiosis applications based on ANP
Abstract
Enterprises have started to establish partnerships both to use their internal resources efficiently and to increase their environmental performance. Partnerships and interoperability of enterprises with different processes enable them to benefit more from their benefits. Moving towards the local and regional economy, these partnerships that increase environmental and own resources have created industrial symbiosis practices. Industrial ecology fields are established in these applications. Both environmental and economic gains can be achieved through the efficient use of resources by enterprises and the minimization of wastes. For the sustainability of these partnerships to be established by enterprises, they need to analyze the measures they take internally. In this study, the concept of industrial symbiosis and the criteria that are effective for the sustainability of these industrial symbiosis are evaluated. Analytical network process method is used. Thus, the industrial symbiosis infrastructures to be established by enterprises have been enabled to move strategically.
Keyword : industrial symbiosis, ANP, industrial partnership, ecology
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aissani, L., Lacassagne, A., Bahers, J. B., & Féon, S. L. (2019). Life cycle assessment of industrial symbiosis: A critical review of relevant reference scenarios. Journal of Industrial Ecology, 23, 972–985. https://doi.org/10.1111/jiec.12842
Alkaş, O., Gür, Ş., & Eren, T. (2020). Küçük ve Orta Ölçekli İşletmelerde E-Tedarik Zincirinin Benimsenmesinde Etkili Olan Faktörlerin Değerlendirilmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 511–521. https://doi.org/10.29130/dubited.601932
Akça, N., Sönmez, S., Gür, Ş., Yılmaz, A., & Eren, T. (2018). Financial manager selection with analytic network process method in public hospitals. Optimum Journal of Economics and Management Sciences, 5(2), 133–146. https://doi.org/10.17541/optimum.390536
Bağ, N., Özdemir, M., & Eren, T. (2012). 0–1 nurse scheduling solution with goal programming and ANP method. International Journal of Engineering Research and Development, 4(1), 2–6.
Bansal, P., & McKnight, B. (2009). Looking forward, pushing back and peering sideways: analyzing the sustainability of industrial symbiosis. Journal of Supply Chain Management, 45(4), 26–37. https://doi.org/10.1111/j.1745-493X.2009.03174.x
Boix, M., Montastruc, L., Azzaro-Pantel, C., & Domenech, S. (2015). Optimization methods applied to the design of ecoindustrial parks: a literature review. Journal of Cleaner Production, 87, 303–317. https://doi.org/10.1016/j.jclepro.2014.09.032
Boons, F., Spekkink, W., & Mouzakitis, Y. (2011). The dynamics of industrial symbiosis: a proposal for a conceptual framework based upon a comprehensive literature review. Journal of Cleaner Production, 19(9–10), 905–911. https://doi.org/10.1016/j.jclepro.2011.01.003
Cao, X., Wen, Z., Xu, J., De Clercq, D., Wang, Y., & Tao, Y. (2020). Many-objective optimization of technology implementation in the industrial symbiosis system based on a modified NSGA-III. Journal of Cleaner Production, 245, 118810. https://doi.org/10.1016/j.jclepro.2019.118810
Cecchin, A., Salomone, R., Deutz, P., Raggi, A., & Cutaia, L. (2020). Relating industrial symbiosis and circular economy to the sustainable development debate. In R. Salomone, A. Cecchin, P. Deutz, A. Raggi, & L. Cutaia (Eds.), Industrial symbiosis for the circular economy (pp. 1–25). Springer, Cham. https://doi.org/10.1007/978-3-030-36660-5_1
Chertow, M. R. (2000). Industrial symbiosis: literature and taxonomy. Annual Review of Energy and the Environment, 25(1), 313–337. https://doi.org/10.1146/annurev.energy.25.1.313
Chertow, M. R. (2007). “Uncovering” industrial symbiosis. Journal of Industrial Ecology, 11(1), 11–30. https://doi.org/10.1162/jiec.2007.1110
Chertow, M., & Ehrenfeld, J. (2012). Organizing self‐organizing systems: Toward a theory of industrial symbiosis. Journal of Industrial Ecology, 16(1), 13–27. https://doi.org/10.1111/j.1530-9290.2011.00450.x
Costa, I., Massard, G., & Agarwal, A. (2010). Waste management policies for industrial symbiosis development: case studies in European countries. Journal of Cleaner Production, 18(8), 815–822. https://doi.org/10.1016/j.jclepro.2009.12.019
Fichtner, W., Tietze-Stöckinger, I., Frank, M., & Rentz, O. (2005). Barriers of inter organisational environmental management: two case studies on industrial symbiosis. Progress in Industrial Ecology, an International Journal, 2(1), 73–88. https://doi.org/10.1504/PIE.2005.006778
Geng, Y., Liu, Z., Xue, B., Dong, H., Fujita, T., & Chiu, A. (2014). Emergy-based assessment on industrial symbiosis: a case of Shenyang Economic and Technological Development Zone. Environmental Science and Pollution Research, 21(23), 13572–13587. https://doi.org/10.1007/s11356-014-3287-8
Gür, Ş., Uslu, B., Eren, T., Akça, N., Yılmaz, A., & Sönmez, S. (2018). Evaluation of operating room performance in hospitals by using analytic network process. Gazi Journal of Health Sciences, 3(3), 10–25.
Gür, Ş., Bedir, N., & Eren, T. (2017). Selection of marketing strategies with analytical network process and PROMETHEE method for medium sized business in food sector. Nevsehir Journal of Science and Technology, 6(1), 79–92. https://doi.org/10.17100/nevbiltek.331412
Gür Ş., & Eren, T. (2016). Evaluation of factors affecting the performance of businesses by analytical network process method. Trakya University Journal of Faculty of Economics and Administrative Sciences, 5(2), 80–97.
Gümüş, T. Ç. (2016). Development of a cleaner production and industrial symbiosis system for eco-industrial parks [Master thesis]. TOBB University of Economics and Technology Institute of Science.
Hamurcu, M., & Eren, T. (2016, October 13–15). Selection of monorail technology for urban transportation in Ankara with analytical network process. In International Symposium on Railway Systems Engineering (pp. 559–566). Karabük.
Hamurcu, M., & Eren, T. (2020). Electric bus selection with multicriteria decision analysis for green transportation. Sustainability, 12(7), 2777. https://doi.org/10.3390/su12072777
Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega, 35(3), 274–289. https://doi.org/10.1016/j.omega.2005.06.005
Jiao, W., & Boons, F. (2014). Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. Journal of Cleaner Production, 67, 14–25. https://doi.org/10.1016/j.jclepro.2013.12.050
Kerdlap, P., Low, J. S. C., Steidle, R., Tan, D. Z. L., Herrmann, C., & Ramakrishna, S. (2019). Collaboration platform for enabling industrial symbiosis: Application of the industrial-symbiosis life cycle analysis engine. Procedia CIRP, 80, 655–660. https://doi.org/10.1016/j.procir.2019.01.081
Kurup, B., & Stehlik, D. (2009). Towards a model to assess the sustainability implications of industrial symbiosis in eco-industrial parks. Progress in Industrial Ecology, an International Journal, 6(2), 103–119. https://doi.org/10.1504/PIE.2009.029077
Kumari, S., & Jeble, S. (2020). Waste management through industrial symbiosis: case study approach. Latin American Journal of Management for Sustainable Development, 5(1), 37–46. https://doi.org/10.1504/LAJMSD.2020.10027398
Leigh, M., & Li, X. (2015). Industrial ecology, industrial symbiosis and supply chain environmental sustainability: a case study of a large UK distributor. Journal of Cleaner Production, 106, 632–643. https://doi.org/10.1016/j.jclepro.2014.09.022
Leong, Y. T., Lee, J. Y., Tan, R. R., Foo, J. J., & Chew, I. M. L. (2017). Multi-objective optimization for resource network synthesis in eco-industrial parks using an integrated analytic hierarchy process. Journal of Cleaner Production, 143, 1268–1283. https://doi.org/10.1016/j.jclepro.2016.11.147
Lin, Y., Liu, Z., Liu, R., Yu, X., & Zhang, L. (2020). Uncovering driving forces of co-benefits achieved by eco-industrial development strategies at the scale of industrial park. Energy & Environment, 31(2), 275–290. https://doi.org/10.1177/0958305X19857908
Montastruc, L., Boix, M., Pibouleau, L., Azzaro-Pantel, C., & Domenech, S. (2013). On the flexibility of an ecoindustrial park (EIP) for managing industrial water. Journal of Cleaner Production, 43, 1–11. https://doi.org/10.1016/j.jclepro.2012.12.039
Muhcu, Ü. (2016). Determining the importance level of critical success factors affecting humanitarian supply chain: Analytic network process application [Master thesis]. Karadeniz Technical University, Institute of Social Sciences.
Nelson, J. A., & Power, M. (2018). Ecology, sustainability, and care: Developments in the field. Feminist Economics, 24(3), 80–88. https://doi.org/10.1080/13545701.2018.1473914
Ocampo L. A., Vergara, V. G. N., Impas, C. G., Tordillo, J. A. S., & Pastoril, J. S. (2015). Identifying critical indicators in sustainable manufacturing using analytic hierarchy process (AHP). Journal of Manufacturing and Industrial Engineering, 14(3–4), 1–8. https://doi.org/10.12776/mie.v14i3-4.444
Özcan, E. C., Özcan, N. A., & Eren, T. (2017). Selection of the solar power plants with CSP technologies by combined ANPPROMETHEE approach. Başkent University Journal of Faculty of Commercial Sciences, 1(1), 18–44.
Pakarinen, S., Mattila, T., Melanen, M., Nissinen, A., & Sokka, L. (2010). Sustainability and industrial symbiosis – The evolution of a Finnish forest industry complex. Resources, Conservation and Recycling, 54(12), 1393–1404. https://doi.org/10.1016/j.resconrec.2010.05.015
Raimbault, J., Broere, J., Somveille, M., Serna, J. M., Strombom, E., Moore, C., Zhu, B., & Sugar, L. (2020). A spatial agent-based model for simulating and optimizing networked eco-industrial systems. Resources, Conservation and Recycling, 155, 104538. https://doi.org/10.1016/j.resconrec.2019.104538
Saaty, T. L. (1999, August). Fundamentals of the analytic network process. In Proceedings of the 5th International Symposium on the Analytic Hierarchy Process (pp. 12–14).
Shah, I. H., Behera, S. K., Rene, E. R., & Park, H. S. (2020). Integration of bio refineries for waste valorization in Ulsan EcoIndustrial Park, Korea. In Waste Biorefinery (pp. 659–678). Elsevier. https://doi.org/10.1016/B978-0-12-818228-4.00024-1
Sevinç, A., Gür, Ş., & Eren, T. (2018). Analysis of the difficulties of SMEs in industry 4.0 applications by analytical hierarchy process and analytical network process. Processes, 6(12), 264. https://doi.org/10.3390/pr6120264
Simboli, A., Taddeo, R., Raggi, A., & Morgante, A. (2020). Structure and relationships of existing networks in view of the potential industrial symbiosis development. In R. Salomone, A. Cecchin, P. Deutz, A. Raggi, & L. Cutaia (Eds.), Industrial symbiosis for the circular economy (pp. 57–71). Springer, Cham. https://doi.org/10.1007/978-3-030-36660-5_4
Sokka, L., Melanen, M., & Nissinen, A. (2008). How can the sustainability of industrial symbioses be measured?. Progress in Industrial Ecology, an International Journal, 5(5–6), 518–535. https://doi.org/10.1504/PIE.2008.023414
Song, X., Geng, Y., Dong, H., & Chen, W. (2018). Social network analysis on industrial symbiosis: A case of Gujiaoecoindustrial park. Journal of Cleaner Production, 193, 414–423. https://doi.org/10.1016/j.jclepro.2018.05.058
Teodorescu, C., & Danubianu, M. (2015). Industrial symbiosis, ecoefficiency, sustainability a case study. Present Environment and Sustainable Development, 9(1), 169–179. https://doi.org/10.1515/pesd-2015-0012
Tinmaz, M. (2017). Selection among technology retail company using fuzzy analytic network process methodology [Master thesis]. Sakarya University Graduate School of Natural and Applied Sciences.
Uslu, B., Gür, Ş., & Eren, T. (2019). Evaluation of best strategy selection for industry 4.0 application by ANP and TOPSIS methods. Eskisehir Technical University Journal of Science and Technology B-Theoretical Sciences, 7(1), 13–38.
Yazan, D. M., & Fraccascia, L. (2020). Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation. International Journal of Production Research, 58(2), 392–414. https://doi.org/10.1080/00207543.2019.1590660
Yu, C., Davis, C., & Dijkema, G. P. (2014). Understanding the evolution of industrial symbiosis research: A bibliometric and network analysis (1997–2012). Journal of Industrial Ecology, 18(2), 280–293. https://doi.org/10.1111/jiec.12073
Zhao, H., Zhao, H., & Guo, S. (2017). Evaluating the comprehensive benefit of eco-industrial parks by employing multi-criteria decision-making approach for circular economy. Journal of Cleaner Production, 142, 2262–2276. https://doi.org/10.1016/j.jclepro.2016.11.041
Wang, Z., Jiang, Y., Huang, Y., & Jia, X. (2017). Complex network method towards evaluating industrial symbiosis. Chemical Engineering Transactions, 61, 169–174. https://doi.org/10.1016/j.ces.2017.06.033
World Energy Council. (2018). World Energy Trilemma Index 2018. https://www.worldenergy.org/assets/downloads/World-Energy-Trilemma-Index-2018.pdf
Wu, J., Pu, G., Ma, Q., Qi, H., & Wang, R. (2017). Quantitative environmental risk assessment for the iron and steel industrial symbiosis network. Journal of Cleaner Production, 157, 106–117. https://doi.org/10.1016/j.jclepro.2017.04.094