Identification of nitrous oxide generation in subsurface wastewater infiltration system filled with mixed matrix
Abstract
Subsurface wastewater infiltration systems (SWIS) are one of the important sources of nitrous oxide (N2O) production; understanding the biological processes and contributions of N2O will help control the amount of N2O produced. To quantitatively reveal the contribution of nitrification and denitrifiaction processes, 8 g potassium nitrate with 99.99 atom % 15N (i.e. 15N accounts for 99.99% of the total N) was dissolved in the influent (concentration: 3.3 g/L). Results showed that nitrification released more N2O within 0–12 h, accounting for 79.6 ± 2.4%. The denitrification process accounted for 88.5 ± 1.3% for N2O generation after the 12th hour. Thus, in order to effectively control the release of N2O, the denitrification process should be given more attention. The maximum release rate of N2O was 8.45 ± 0.8 mg/m2·h, which occurred near the end of the first wetting-drying cycle. Since then, peaks appeared periodically, mostly in the “rest” periods.
Keyword : subsurface wastewater infiltration, nitrous oxide, generation, domestic sewage, mixed matrix
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Domingo-Félez, C., Pellicer-Nàcher, C., Petersen, M. S., Jensen, M. M., Plósz, B. G., & Smets, B. F. (2017). Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-batch experiments and modeling. Biotechnology and Bioengineering, 114(1), 132–140. https://doi.org/10.1002/bit.26062
Han, W. J., Shi, M. M., Chang, J., Ren, Y., Xu, R. H., Zhang, C. B., & Ge, Y. (2017). Plant species diversity reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels. Environmental Science and Pollution Research, 24, 5938–5948. https://doi.org/10.1007/s11356-016-8288-3
Ji, Q. X., Babbin, A. R., Jayakumar, A., Oleynik, S., & Ward, B. B. (2015). Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone. Geophysical Research Letters, 42(24), 10755–10764. https://doi.org/10.1002/2015GL066853
Jiang, Y. Y., Sun, Y. F., Pan, J., Qi, S. Y., Chen, Q. Y., & Tong, D. L. (2017). Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates. Bioresource Technology, 244(Part 1), 8–14. https://doi.org/10.1016/j.biortech.2017.07.135
Kong, H. N., Kimochi, Y., Mizuochi, M., Inamori, R., & Inamori, Y. (2002). Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process. Science of the Total Environment, 290(1–3), 59–67. https://doi.org/10.1016/S0048-9697(01)01058-0
Li, M., Wu, H. M., Zhang, J., Ngo, H. H., Guo, W. S., & Kong, Q. (2017a). Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresource Technology, 240, 157–164. https://doi.org/10.1016/j.biortech.2017.02.054
Li, Y. H., Li, H. B., Xu, X. Y., Wang, S. Q., & Pan, J. (2018). Does carbon-nitrogen ratio affect nitrous oxide emission and spatial distribution in subsurface wastewater infiltration system? Bioresource Technology, 250, 846–852. https://doi.org/10.1016/j.biortech.2017.12.024
Li, Y. H., Li, H. B., Xu, X. Y., Xiao, S. Y., Wang, S. Q., & Xu, S. C. (2017b). Field study on N2O emission from subsurface wastewater infiltration system under variable loading rates and drying-wetting cycles. Water Science and Technology, 76(8), 2158–2167. https://doi.org/10.2166/wst.2017.388
Li, Y. H., Li, H. B., Xu, X. Y., Zhou, Y. C., & Gong, X. (2016). Correlations between the oxidation-reduction potential characteristics and microorganism activities in the subsurface wastewater infiltration system. Desalination and Water Treatment, 57(12), 5350–5357. https://doi.org/10.1080/19443994.2014.1003606
Li, Y. H., Li, H. B., Yang, L., Xu, X. Y., Wang, S. Q., & Su, F. (2019). Study on the contribution of different depth layers to N2O emission in subsurface wastewater infiltration system. Ecological Engineering, 133, 69–75. https://doi.org/10.1016/j.ecoleng.2019.04.030
Lloréns, M., Pérez-Marín, A. B., Aguilar, M. I., Sáez, J., Ortuño, J. F., & Meseguer V. F. (2011). Nitrogen transformation in two subsurface infiltration systems at pilot scale. Ecological Engineering, 37(5), 736–743. https://doi.org/10.1016/j.ecoleng.2010.06.033
Lyu, W. L., Huang, L., Xiao, G. Q., & Chen, Y. S. (2017). Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands. Bioresource Technology, 245(Part A), 171–181. https://doi.org/10.1016/j.biortech.2017.08.056
Mander, Ü., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Nogueira, S. F., Jamsranjav, B., Kasak, K., Truu, J., Tournebize, J., &Mitsch, W. J. (2014). Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 66, 19–35. https://doi.org/10.1016/j.ecoleng.2013.12.006
Maucieri, C., Barbera, A. C., Vymazai, J., & Borin, M. (2017). A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agricultural and Forest Meteorology, 236, 175–193. https://doi.org/10.1016/j.agrformet.2017.01.006
Pan, J., Yuan, F., Zhang, Y., Huang, L. L., Cheng, F., Zheng, F. P., & Liu, R. X. (2016a). Nitrogen removal in subsurface wastewater infiltration systems with and without intermittent aeration. Ecological Engineering, 94, 471–477. https://doi.org/10.1016/j.ecoleng.2016.06.025
Pan, J., Yuan, F., Zhang, Y., Huang, L. L., Yu, L., Zheng, F. P., Cheng, F., & Zhang, J. D. (2016b). Pollutants removal in subsurface infiltration systems by shunt distributing wastewater with/without intermittent aeration under different shunt ratios. Bioresource Technology, 218, 101–107. https://doi.org/10.1016/j.biortech.2016.06.079
Sabba, F., Picioreanu, C., Pérez, J., & Nerenberg, R. (2015). Hydroxylamine diffusion can enhance N2O emissions in nitrifying biofilms: a modeling study. Environmental Science and Technology, 49(3), 1486–1494. https://doi.org/10.1021/es5046919
Sun, Y. F., Qi, S. Y., Zheng, F. P., Huang, L. L., Pan, J., Jiang, Y. Y., Hou, W. Y., & Xiao, L. (2018). Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge. Bioresource Technology, 249, 57–61. https://doi.org/10.1016/j.biortech.2017.10.004
Wu, L., Tang, S. R., He, D. D., Wu, X., Shaaban, M., Wang, M. L., Zhao, J. S., Khan, I., Zheng, X. H., Hu, R. G., & Horwath, W. R. (2017). Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Science of the Total Environment, 583, 190–201. https://doi.org/10.1016/j.scitotenv.2017.01.050
Xi, D., Bai, R., Zhang, L. M., & Fang, Y. T. (2016). Contribution of anammox to nitrogen removal in two temperate forest soils. Applied and Environmental Microbiology, 82, 4602– 4612. https://doi.org/10.1128/AEM.00888-16
Zhang, J. B., Cai, Z. C., Cheng, Y., & Zhu, T. B. (2009). Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biology and Biochemistry, 41(12), 2551–2557. https://doi.org/10.1016/j.soilbio.2009.09.016
Zhang, L. Y., Ye, Y. B., Wang, L. J., Xi, B. D., Wang, H. Q., & Li, Y. (2015). Nitrogen removal processes in deep subsurface wastewater infiltration systems. Ecological Engineering, 77, 275–283. https://doi.org/10.1016/j.ecoleng.2015.01.008