Effect of ionised (electrolysed) water on the rat embryo development
Abstract
The aim of this study was to investigate the effects ionised water has on embryonic development using Wistar rat animal model. For that purpose, alkaline and acidic water was prepared with a domestic water ioniser. It was found that the concentrations of Cl–, SO42– ions increased in acidic water, while in alkaline water, Ca2+ concentration decreased and halogenated hydrocarbon concentrations exceeded permitted levels. The animals were given test alkaline and acidic water, as well as tap water as control. After three months, female rats were mated. On the 21st day of gestation, they were euthanized and subjected to Caesarean sections; the number of live and dead fetuses was recorded. The fetuses were examined for external or visceral malformations and skeletal abnormalities. The data showed that embryo death was higher in acidic and alkaline experimental groups in comparison to the control group. The fetuses in both test groups were significantly shorter than in the control group. Long bones of fetal hind and front limbs were shorter in the acidic group in comparison to the control group. Retardation of limb osteogenesis was expressed in the acidic group fetuses. Therefore, in our model, ionised water had a negative effect on the embryonic development.
Keyword : alkaline and acidic water, electrolysis, rat, embryonic development, water cleaning technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdelhalim, M. I., Salaheldeen, Y. M., Idris, O. F., Abdelsalam, E. B., & Sabahelkhier, M. K. (2016). Histopathological effect on different rat tissues induced by the trihalomethanebromoform administered in drinking water. Nova Journal of Medical and Biological Sciences, 5, 1-7. https://doi.org/10.20286/nova-jmbs-050280
Audickaitė, A., Stankevič, J., Šimčikas, V., Cesiulis, H., Jarašienė, R., Bukelskienė, V., Žalgevičienė, V., & Tutkuvienė, J. (2014). Jonizuoto (elektrolizuoto) vandens įtaka žiurkių patelių fizinei būklei (eksperimentinis tyrimas) [The influence of ionized (electrolysed) water on physical status of female rats (experimental study)]. Sveikatos mokslai [Health Sciences], 24, 46-51. https://doi.org/10.5200/sm-hs.2014.024
Benmarhnia, T., Delpla, I., Schwarz, L., Rodriguez, M., & Levallois, P. (2018). Heterogeneity in the relationship between disinfection by-products in drinking water and cancer: a systematic review. International Journal of Environmental Research and Public Health, 15(5), 979. https://doi.org/10.3390/ijerph15050979
Bui, V. N., Nguyen, K. V., Pham, N. T., Bui, A. N., Dao, T. D., Nguyen, H. T., Trinh, D. Q., Inui, K., Uchiumi, H., Ogawa, H., & Imai, K. (2017). Potential of electrolysed water for disinfection of foot-and-mouth disease virus. Journal of Veterinary Medical Science, 79, 726-729. https://doi.org/10.1292/jvms.16-0614
Chen, M. J., Lin, C. H., Duh, J. M., Chou, W. S., & Hsu, H. T. (2011). Development of a multi-pathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools. Journal of Hazardous Materials, 185, 1037-1044. https://doi.org/10.1016/j.jhazmat.2010.10.011
Dawson-Hughes, B. (2016). Acid-base balance of the diet: implications for bone. In C. M. Weaver, R. M. Daly, & H. A. Bischoff-Ferrari (Eds.), Nutritional influences on bone health (9th International Symposium). Cham: Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-32417-3_9
El-Fiky, N. K. (2002). The influence of water pH on the embryonic development of grass carp, Ctenopharyngodon idell. Egyptian Journal of Aquatic Biology and Fisheries, 6, 233-261. https://doi.org/10.21608/ejabf.2002.1760
Fadel, R. A., & Persaud, T. V. (1993). Ossification of the vertebral column in the offspring of rats exposed to alcohol, acetaldehyde and caffeine. Experimental and Toxicologic Pathology, 45, 51-54. https://doi.org/10.1016/S0940-2993(11)80456-2
Fadel, R. A., Sequeira, R. P., Abu-Hijleh, M. F., Obeidat, M., & Salem, A. H. (2012). Effect of prenatal administration of therapeutic doses of topiramate on ossification of ribs and vertebrae in rat fetuses. Romanian Journal of Morphology and Embryology, 53, 321-327.
Fenton, T. R., Eliasziw, M., Lyon, A. W., Tough, S. C., & Hanley, D. A. (2008). Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. The American Journal of Clinical Nutrition, 88, 1159-1166. https://doi.org/10.1093/ajcn/88.4.1159
Fenton, T. R., & Huang, T. (2016). Systematic review of the association between dietary acid load, alkaline water and cancer. BMJ Open, 6, 1-5. https://doi.org/10.1136/bmjopen-2015-010438
Fenton, C. J., Fenton, T. R., & Huang, T. (2017). Further evidence of no association between dietary acid load and disease. The Journal of Nutrition, 147(2), 272. https://doi.org/10.3945/jn.116.242107
Flem, B., Reimann, C., Birke, M., Banks, D., & Filzmoser, P. (2015). Inorganic chemical quality of european tap-water: 2. Geographical distribution. Applied Geochemistry, 59, 211-224. https://doi.org/10.1016/j.apgeochem.2015.01.016
Florentin, A., Hautemaniere, A., & Hartemann, P. (2011). Health effects of disinfection by-products in chlorinated swimming pools. International Journal of Hygiene and Environmental Health, 214, 461-469. https://doi.org/10.1016/j.ijheh.2011.07.012
Hayes, A. W. (1994). Principles and methods of toxicology. New York: Raven Press.
Hrudey, S. E., Backer, L. C., Humpage, A. R., Krasner, S. W., Michaud, D. S., Moore, L. E., Singer, P. C., & Stanford, B. D. (2015). Evaluating evidence for association of human bladder cancer with drinking-water chlorination disinfection byproducts. Journal of Toxicology and Environmental Health, Part B, 18, 213-241. https://doi.org/10.1080/10937404.2015.1067661
Hu, H., Zhao, X., Ma, J., Shangguan, Y., Pan, Z., Chen, L., Zhang, X., & Wang, H. (2018). Prenatal nicotine exposure retards osteoclastogenesis and endochondral ossification in fetal long bones in rats. Toxicology Letters, 295, 249-255. https://doi.org/10.1016/j.toxlet.2018.07.005
Ignacio, R. M. C., Joo, K.-B., & Lee, K.-J. (2012). Clinical effect and mechanism of alkaline reduced water. Journal of Food and Drug Analysis, 20, 394-397.
Jensen, V. F. H., Molck, A.-M., Berthelsen, L. O., Andersen, L., Demozay, D., Renaut R., & Bogh, I. (2017). Gestational hypoglycaemia restricts foetal growth and skeletal ossification in the rat. Journal of Pregnancy and Child Health, 4, 1-11.
Khubutiya, M. S., Evseev, A. K., Kolesnikov, V. A., Goldin, M. M., Davydov, A. D., Volkov, A. G., & Stepanov, A. (2010). Measurements of platinum electrode potential in blood and blood plasma and serum. Russian Journal of Electrochemistry, 46, 537-541. https://doi.org/10.1134/S1023193510050071
Klimas, A., & Mališauskas, A. (2008). Boron, fluoride, strontium and lithium anomalies in fresh groundwater of Lithuania. Geologija, 50(2), 114-124. https://doi.org/10.2478/v10056-008-0015-4
Koufman, J. A., & Johnston, N. (2012). Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease. Annals of Otology, Rhinology & Laryngology, 121, 431-434. https://doi.org/10.1177/000348941212100702
Lack, T. (1999). Water and health in Europe: an overview. BMJ, 318(7199), 1678-1682. https://doi.org/10.1136/bmj.318.7199.1678
Laucevičius, T. (2009). Jonizuotas vanduo. Gyvenimas be ligų. [Ionised water. Life without diseases]. Kaunas: Obuolys (Lithuania).
Legay, C., Rodriguez, M. J., Sadiq, R., Sérodes, J. B., Levallois, P., & Proulx, F. (2011). Spatial variations of human health risk associated with exposure to chlorination by-products occurring in drinking water. Journal of Environmental Management, 92, 892-901. https://doi.org/10.1016/j.jenvman.2010.10.056
LRP. (2016). Lithuania’s water resources and their protection receive attention in Davos. Vilnius. Retrieved from https://www.lrp.lt/en/press-centr/press-releases/lithuanias-water-resources-and-their-protection-receive-attention-in-davos/24575
Magro, M., Corain, L., Ferro, S., Baratell, D., Bonaiuto, E., Terzo, M., Corraducci, V., Salmaso, L., & Vianello, F. (2016). Alkaline water and longevity: a murine study. Evidence-Based Complementary and Alternative Medicine, 2016, 1-6. https://doi.org/10.1155/2016/3084126
Merne, M. E., Syrjanen, K. J., & Syrjanen, S. M. (2001). Systemic and local effects of long-term exposure to alkaline drinking water in rats. International Journal of Experimental Pathology, 82, 213-219. https://doi.org/10.1111/j.1365-2613.2001.iep188.x
Mills, C. J., Bull, R. J., Cantor, K. P., Reif, J., Hrudey, S. E., & Huston, P. (1998). Workshop report. Health risks of drinking water chlorination by-products: report of an expert working group. Chronic Diseases in Canada, 19, 91-102.
Mousa, H. A. (2016). Health effects of alkaline diet and water, reduction of digestive-tract bacterial load, and earthing. Alternative Therapies in Health and Medicine, 22, 24-33.
Ornoy, A., Rand, S. B., & Bischitz, N. (2010). Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: studies on cultured rat embryos. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 89, 106-115. https://doi.org/10.1002/bdrb.20230
Osman, K. T. (2018). Management of soil problems. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-75527-4
Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4, 80-93.
Rauch, F., & Schoenau, E. (2001). The developing bone: slave or master of its cells and molecules? Pediatric Research, 50, 309-314. https://doi.org/10.1203/00006450-200109000-00003
Santos, B. A. F., Serenario, M. E. D., Pinto, D. L. M. F., Simoes, T. A., Malafaia, A. M. S., & Bueno, A. H. S. (2019). Evaluation of micro-crack incidence and their influence on the corrosion resistance of steel coated with different chromium thicknesses. Revista Virtual de Quimica, 11, 264-274. https://doi.org/10.21577/1984-6835.20190019
Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., Otsubo, K., Morisawa, S., & Katakura, Y. (1997). Electrolysed–reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochemical and Biophysical Research Communications, 234, 269-274. https://doi.org/10.1006/bbrc.1997.6622
Shirahata, S., Hamasaki, T., & Teruya, K. (2012). Advanced research on the health benefit of reduced water. Trends in Food Science & Technology, 23, 124-131. https://doi.org/10.1016/j.tifs.2011.10.009
Sun, J. L., Zhang, S. K., Chen, J. Y., & Han, B. Z. (2012). Efficacy of acidic and basic electrolysed water in eradicating Staphylococcus aureus biofilm. Canadian Journal of Microbiology, 58, 448-454. https://doi.org/10.1139/w2012-005
Villanueva, C. M., Cordier, S., Font-Ribera, L., Salas, L. A., & Levallois, P. (2015). Overview of disinfection by-products and associated health effects. Current Environmental Health Reports, 2, 107-115. https://doi.org/10.1007/s40572-014-0032-x
Vilniaus vandenys. (2016). Water quality. Retrieved from https://www.vv.lt/en/quality/#
Volker, J., & Borchardt, D. (2019). Drinking water quality at risk: a European perspective. In M. Schroter, A. Bonn, S. Klotz, R. Seppelt, & Baessler, C. (Eds.), Atlas of ecosystem services. Drivers, risks, and societal responses. Cham: Springer International Publishing AG.
Vormann, J., & Goedecke, T. (2002). Latent acidosis: overacidification as a cause of chronic diseases. Journal Suisse de Medecine Globale, 14, 90-96.
Watanabe, T., Kishikawa, Y., & Shirai, W. (1997). Influence of alkaline ionised water on rat erythrocyte hexokinase activity and myocardium. Journal of Toxicological Sciences, 22, 141152. https://doi.org/10.2131/jts.22.2_141
Watanabe, T., & Kishikawa, Y. (1998a). Degradation of myocardiac myosin and creatine kinase in rats given alkaline ionised water. Journal of Veterinary Medical Science, 60, 245-250. https://doi.org/10.1292/jvms.60.245
Watanabe, T., Shirai, W., Pan, I., Fukuda, Y., Murasugi, E., Sato, T., Kamata, H., & Uwatoko, K. (1998b). Histopathological influence of alkaline ionised water on myocardial muscle of mother rats. Journal of Toxicological Sciences, 23, 411-417. https://doi.org/10.2131/jts.23.5_411
Weidman, J., Holsworth, R. E., Brossman, B., Cho, G. J., Cyr, J. S., & Fridman, G. (2016). Effect of electrolysed high-pH alkaline water on blood viscosity in healthy adults. Journal of the International Society of Sports Nutrition, 13(45), 1-13. https://doi.org/10.1186/s12970-016-0153-8
Weldeslassie, T., Naz, H., Singh, B., & Oves, M. (2018). Chemical contaminants for soil, air and aquatic ecosystem. In M. Oves, M. Z. Khan, & I. M. I. Ismail (Eds.), Modern age environmental problems and their remediation. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-64501-8_1
World Health Organization. (2005). Nutrients in drinking water. Geneva. Retrieved from http://www.who.int/water_sanitation_health/dwq/nutrientsindw.pdf?ua=1
Xu, H., Akesson, A., Orsini, N., Hakansson, N., Wolk, A., & Carrero, J. J. (2016). Modest U-shaped association between dietary acid load and risk of all-cause and cardiovascular mortality in adults. The Journal of Nutrition, 146, 1580-1585. https://doi.org/10.3945/jn.116.231019
Xue, J., Shang, G., Tanaka, Y., Saihara, Y., Hou, L., Velasquez, N., Liu, W., & Lu, Y. (2014). Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water. BMC Complementary and Alternative Medicine, 14, (81), 1-9. https://doi.org/10.1186/1472-6882-14-81
Zukiene, J., Zalgeviciene, V., & Rizgeliene, R. (2003). The influence of azathioprine on the osteogenesis of the limbs. Medicina, 39, 584-588.