An integrated type-2 fuzzy decision model based on WASPAS and SECA for evaluation of sustainable manufacturing strategies
Abstract
One of the most essential topics for the present and future generations is sustainability. Today, because of threats made by traditional and old manufacturing practices, sustainability has become an essential topic in manufacturing companies. Attaining a sustainable manufacturing process requires making decisions about the strategies of manufacturing. In this paper, a novel integrated model is developed to evaluate sustainable manufacturing strategies. The proposed model is based upon two multi-criteria decision-making (MCDM) methods: WASPAS (Weighted Aggregated Sum Product ASsessment) and SECA (Simultaneous Evaluation of Criteria and Alternatives). Due to the uncertainty of evaluation process, we use interval type-2 fuzzy sets (IT2FSs). An example of evaluating sustainable manufacturing strategies is presented, and a sensitivity analysis is carried out for illustration of the developed approach and validation of it. The findings show the efficiency of the developed model, and based on the considered example, “Eco-efficiency” can be regarded as an effective strategy.
Keyword : environmental sustainability, sustainable manufacturing, manufacturing strategy, multicriteria decision-making, interval type-2 fuzzy sets, WASPAS, SECA
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abdullah, I., Wan Mahmood, W. H., Md Fauadi, H. F., Ab Rahman, M. N., & Mohamed, S. B. (2017). Sustainable manufacturing practices in Malaysian palm oil mills: Priority and current performance. Journal of Manufacturing Technology Management, 28(3), 278-298. https://doi.org/10.1108/jmtm-09-2016-0128
Bhanot, N., Rao, P. V., & Deshmukh, S. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing. Journal of Cleaner Production, 142, 4412-4439. https://doi.org/10.1016/j.jclepro.2016.11.123
Canadian Manufacturing Sector Gateway. (2019). Sustainable manufacturing. Retrieved from https://www.ic.gc.ca/eic/site/mfg-fab.nsf/eng/h_00193.html
Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329-341. https://doi.org/10.1016/j.knosys.2015.06.004
Chen, S.-M., & Lee, L.-W. (2010). Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Systems with Applications, 37(1), 824-833. https://doi.org/10.1016/j.eswa.2009.06.094
Chu, T.-C., & Tsao, C.-T. (2002). Ranking fuzzy numbers with an area between the centroid point and original point. Computers & Mathematics with Applications, 43(1-2), 111-117. https://doi.org/10.1016/s0898-1221(01)00277-2
Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Computers & Operations Research, 81, 282-304. https://doi.org/10.1016/j.cor.2016.11.005
Heydari, M., Honarbakhsh, A., Pajoohesh, M., & Zangiabadi, M. (2018). Land use optimization using the fuzzy mathematicalspatial approach: a case study of Chelgerd watershed, Iran. Journal of Environmental Engineering and Landscape Management, 26(2), 75-87. https://doi.org/10.3846/16486897.2017.1350688
Joung, C. B., Carrell, J., Sarkar, P., & Feng, S. C. (2013). Categorization of indicators for sustainable manufacturing. Ecological Indicators, 24, 148-157. https://doi.org/10.1016/j.ecolind.2012.05.030
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decisionmaking. Informatica, 29(2), 265-280. https://doi.org/10.15388/informatica.2018.167
Keshavarz Ghorabaee, M., Amiri, M., Sadaghiani, J. S., & Goodarzi, G. H. (2014). Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. International Journal of Advanced Manufacturing Technology, 75(5-8), 1115-1130. https://doi.org/10.1007/s00170-014-6142-7
Keshavarz Ghorabaee, M., Amiri, M., Salehi Sadaghiani, J., & Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(5), 993-1016. https://doi.org/10.1142/s0219622015500212
Kumar, A., Shankar, R., & Thakur, L. S. (2018). A big data driven sustainable manufacturing framework for condition-based maintenance prediction. Journal of Computational Science, 27, 428-439. https://doi.org/10.1016/j.jocs.2017.06.006
Liao, H., Xu, Z., Herrera-Viedma, E., & Herrera, F. (2018). Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. International Journal of Fuzzy Systems, 20(7), 2084-2110. https://doi.org/10.1007/s40815-017-0432-9
Liu, P., Chen, S.-M., & Wang, P. (2018). Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/tsmc.2018.2852948
Liu, P., Gao, H., & Ma, J. (2019). Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Information Sciences, 490, 292-316. https://doi.org/10.1016/j.ins.2019.03.079
Liu, P., & Liu, J. (2018). Some q‐rung orthopai fuzzy Bonferroni mean operators and their application to multi‐attribute group decision making. International Journal of Intelligent Systems, 33(2), 315-347. https://doi.org/10.1002/int.21933
Liu, P., & Wang, P. (2018a). Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers. IEEE Transactions on Fuzzy systems, 27(5), 834-848. https://doi.org/10.1109/tfuzz.2018.2826452
Liu, P., & Wang, P. (2018b). Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making. International Journal of Intelligent Systems, 33(2), 259-280. https://doi.org/10.1002/int.21927
Mardani, A., Jusoh, A., Md Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516-571. https://doi.org/10.1080/1331677x.2015.1075139
Maxwell, D., Sheate, W., & van der Vorst, R. (2006). Functional and systems aspects of the sustainable product and service development approach for industry. Journal of Cleaner Production, 14(17), 1466-1479. https://doi.org/10.1016/j.jclepro.2006.01.028
Mebratu, D. (1998). Sustainability and sustainable development: historical and conceptual review. Environmental Impact Assessment Review, 18(6), 493-520. https://doi.org/10.1016/S0195-9255(98)00019-5
Mendel, J. M., John, R. I., & Liu, F. L. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, 14(6), 808-821. https://doi.org/10.1109/tfuzz.2006.879986
Ocampo, L. A., Clark, E. E., & Promentilla, M. A. B. (2016). Computing sustainable manufacturing index with fuzzy analytic hierarchy process. International Journal of Sustainable Engineering, 9(5), 305-314. https://doi.org/10.1080/19397038.2016.1144828
Ocampo, L. A., & Estanislao–Clark, E. (2014). Developing a framework for sustainable manufacturing strategies selection. DLSU Business & Economics Review, 23, 115-131.
Porter, M. (1996). America’s green strategy. In R. Welford & R. Starkey (Eds.), Business and the environment: a reader. London, UK: Earthscan.
Qin, J. (2019). A survey of type-2 fuzzy aggregation and application for multiple criteria decision making. Journal of Data, Information and Management. https://doi.org/10.1007/s42488-019-00002-1
Rajak, S., & Vinodh, S. (2015). Application of fuzzy logic for social sustainability performance evaluation: a case study of an Indian automotive component manufacturing organization. Journal of Cleaner Production, 108, 1184-1192. https://doi.org/10.1016/j.jclepro.2015.05.070
Shankar, K. M., Kumar, P. U., & Kannan, D. (2016). Analyzing the drivers of advanced sustainable manufacturing system using AHP approach. Sustainability, 8(8), 824. https://doi.org/10.3390/su8080824
Singh, S., Olugu, E. U., Musa, S. N., & Mahat, A. B. (2018). Fuzzy-based sustainability evaluation method for manufacturing SMEs using balanced scorecard framework. Journal of Intelligent Manufacturing, 29(1), 1-18. https://doi.org/10.1007/s10845-015-1081-1
Singh, S., Olugu, E. U., Musa, S. N., Mahat, A. B., & Wong, K. Y. (2016). Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment. The International Journal of Advanced Manufacturing Technology, 84(1), 547-563. https://doi.org/10.1007/s00170-015-7553-9
Teng, F., Liu, Z., & Liu, P. (2018). Some power Maclaurin symmetric mean aggregation operators based on Pythagorean fuzzy linguistic numbers and their application to group decision making. International Journal of Intelligent Systems, 33(9), 1949-1985. https://doi.org/10.1002/int.22005
Thirupathi, R., & Vinodh, S. (2016). Application of interpretive structural modelling and structural equation modelling for analysis of sustainable manufacturing factors in Indian automotive component sector. International Journal of Production Research, 54(22), 6661-6682. https://doi.org/10.1080/00207543.2015.1126372
United States Environmental Protection Agency. (2019). Sustainable manufacturing. Retrieved from https://www.epa.gov/sustainability/sustainable-manufacturing
Vimal, K., & Vinodh, S. (2016). LCA integrated ANP framework for selection of sustainable manufacturing processes. Environmental Modeling & Assessment, 21(4), 507-516. https://doi.org/10.1007/s10666-015-9490-2
Vinodh, S., & Girubha, R. J. (2012a). Sustainable concept selection using ELECTRE. Clean Technologies and Environmental Policy, 14(4), 651-656. https://doi.org/10.1007/s10098-011-0429-2
Vinodh, S., & Jeya Girubha, R. (2012b). PROMETHEE based sustainable concept selection. Applied Mathematical Modelling, 36(11), 5301-5308. https://doi.org/10.1016/j.apm.2011.12.030
Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. https://doi.org/10.1016/j.fss.2005.11.006
Wu, H., Xu, Z., Ren, P., & Liao, H. (2018). Hesitant fuzzy linguistic projection model to multi-criteria decision making for hospital decision support systems. Computers & Industrial Engineering, 115, 449-458. https://doi.org/10.1016/j.cie.2017.11.023
Xu, Z. (2005). Deviation measures of linguistic preference relations in group decision making. Omega, 33(3), 249-254. https://doi.org/10.1016/j.omega.2004.04.008
Xu, Z. (2015). Uncertain multi-attribute decision making: Methods and applications. Berlin: Springer. https://doi.org/10.1007/978-3-662-45640-8
Xu, Z., & Wang, H. (2017). On the syntax and semantics of virtual linguistic terms for information fusion in decision making. Information Fusion, 34, 43-48. https://doi.org/10.1016/j.inffus.2016.06.002
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning – I. Information Sciences, 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810
Zhou, Z., Dou, Y., Zhang, X., Zhao, D., & Tan, Y. (2018). A group decision-making model for wastewater treatment plans selection based on intuitionistic fuzzy sets. Journal of Environmental Engineering and Landscape Management, 26(4), 251-260. https://doi.org/10.3846/jeelm.2018.6122