Share:


Fly ash and slag utilization for the Serbian railway substructure

Abstract

Approximately 7 million tons of fly ash and slag are produced in thermal power plants in Serbia every year, only 3% of which is used in the cement industry. About 300 million tons of the ash-slag mixture are disposed in landfills, occupying an area of approximately 1600 hectares and generating environmental issues. Fly ash from Serbian power plants has pozzolanic properties and due to low concentration of calcium compounds (less than 10% CaO), they do not have self-cementing properties. According to the ASTM C618-15, this ash is from class F. According to the European Standard EN 197-1:2011, this ash is siliceous (type V) ash. From April 2014 to May 2015, an investigation of engineering properties of fly ash and mixtures of fly ash and slag from landfill (without or with binders of cement/lime) was conducted at the Laboratory of Soil Mechanics at the Faculty of Civil Engineering of the University of Belgrade (Serbia) and at the Institute for Testing of Materials – IMS Institute in Belgrade. The laboratory test results were showed in the study ‘Utilization of fly ash and slag produced in the TPP JP EPS thermal power plants for construction of railways’. Four kinds of waste materials from Serbian power plants were laboratory tested: (a) an ash-slag mixture from landfills at the ‘Nikola Tesla A’ thermal power plant; (b) fly ash from silos in the ‘Nikola Tesla B’ thermal power plant; (c) an ash-slag mixture from landfills at the ‘Kostolac A’ and ‘Kostolac B’ thermal power plants and ‘Srednje kostolačko ostrvo’ landfill; (d) fly ash from the ‘Kostolac’ thermal power plant. The following physical and mechanical properties of ash and mixtures were investigated: grain size distribution, Atterberg limits, specific gravity, moisture-density relationship, shear strength parameters in terms of effective stresses, California Bearing Ratio (CBR), and deformation parameters. The paper presents the results of laboratory tests of the materials with and without binders, and based on the laboratory results and previous research, the paper presents possibilities of using fly ash and slag for the construction of railway substructure in the planned construction and reconstruction of railway network in Serbia. The obtained results indicate that tested fly ash and ash-slag mixture have met the technical requirements and that they have the potential to be used in railway substructure.


First published online 12 December 2016

Keyword : railway substructure, embankments, technical requirements, fly ash, slag, laboratory tests

How to Cite
Vukićević, M., Popović, Z., Despotović, J., & Lazarević, L. (2018). Fly ash and slag utilization for the Serbian railway substructure. Transport, 33(2), 389–398. https://doi.org/10.3846/16484142.2016.1252427
Published in Issue
Jan 26, 2018
Abstract Views
1278
PDF Downloads
1205
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Agencija za zaštitu od jonizujućih zračenja i nuklearnu sigurnost Srbije. 1999. Pravilnik o granicama radioaktivne kontaminacije lica, radne i životne sredine i načinu sprovođenja dekontaminacije [Regulation on the limits of radioactive contamination of people and environment and methods for decontamination]. Available from Internet: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/5%20Pravilnik%20o%20%20granicama%20kontaminacije%20lica%20radne%20i%20zivotne%20sredine%20lat.pdf (in Serbian).

American Coal Ash Association. 2003. Fly ash facts for highway engineers. Technical Report No FHWA-IF-03-019, US. 81 p. Available from Internet: http://www.fhwa.dot.gov/pavement/recycling/fach00.cfm

ASTM C618-15. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.

Baščarević, Z.; Komljenović, M.; Petrašinović-Stojkanović, L.; Jovanović, N.; Rosić, A.; Ršumović, M. 2006. Ispitivanje svojstava elektro-filterskog pepela termoelektrana u cilju njegove upotrebe kao sekundarne sirovine za proizvodnju portland-cementnog klinkera, Hemijska industrija 60(9–10): 245–252. (in Serbian). http://doi.org/10.2298/HEMIND0610245B

Cmiljanić, S.; Vujanić, V.; Rosić, B.; Vuksanović, B.; Tošović, S.; Jotić, S. 2010. Physical-mechanical properties of fly-ash originating from thermo-electric power plants of Serbia, in Proceedings of the 14th Danube-European Conference on Geotechnical Engineering: From Research to Design in European Practice, 2–4 June 2010, Bratislava, Slovakia, 1–9 (CD).

EC. 2011a. Commission Decision of 26 April 2011 Concerning a Technical Specification for Interoperability Relating to the ‘Infrastructure’ Subsystem of the Trans-European Conventional Rail System. Notified under document C(2011) 2741. 2011/275/EU. 68 p. Available from Internet: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011D0275&from=EN

EC. 2011b. White Paper: Roadmap to a Single European Transport Area – Towards a Competitive and Resource Efficient Transport System. COM(2011) 144 final. 28.3.2011, Brussels. Available from Internet: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0144

EN 197-1:2011. Cement – Part 1: Composition, Specifications and Conformity Criteria for Common Cements.

Gomes Correia, A. 2004. Conception des chaussées: approche mécanique, caractérisation des matériaux et leuré valuation dans les plates-formes routière, in Les plate-formes d’infrastructures de transport – Conception, terrassement et contrôles, 20 octobre 2004, France, 67 p. Available from Internet: http://c.f.m.s.free.fr/Manifestations/041020/correia.pdf

Havanagi, V. G.; Sinha, A. K.; Mathur, S. 2011. Design and stability analysis of pond ash railway embankment, in Geotechnical Engineering for Disaster Mitigation and Rehabilitation and Highway Engineering 2011: Geotechnical and Highway Engineering – Practical Applications, Challenges and Opportunities, 18–20 May 2011, Semarang, Indonesia, 349–355. http://doi.org/10.1142/9789814365161_0041

Institut IMS. 2015. Korišcenje letećeg pepela i šljake proizvedenih u TE JP EPS zapotre beželeznice [Utilization of Fly Ash and Slag Produced in the TPP JP EPS Thermal Power Plants for Construction of Railways]. Beograd, Srbija. 163 s. (in Serbian).

Institut za puteve. 2008. Korišćenje letećeg pepela i šljake proizvedenih u termoelektrani “Nikola Tesla” (A i B) i termoelektrani “Kostolac” (A i B) za potrebe putogradnje [Utilization of fly ash and slag produced in the TPP “Nikola Tesla” (A and B) and TPP “Kostolac” (A and B) for construction of road]. Beograd, Srbija. 157 s. (in Serbian).

Italferr S.p.A. 2009. General Master Plan for Transport in Serbia. Final Report 05SER01/04/016. A project implemented by Italferr S.p.A. in association with IIPP, NEA and Witteveen+Bos. 189 p. Available from Internet: http://www.seetoint.org/wp-content/uploads/downloads/2014/01/Serbia_General-Master-Plan-for-Transport-2009.pdf

Kolay, P. K.; Sii, H. Y.; Taib, S. N. L. 2011. Tropical Peat Soil Stabilization using class F pond ash from coal fired power plant, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 5(2): 71–75.

Ministarstvo građevinarstva, saobraćaja i infrastrukture Republike Srbije. 2014. Projekti u realizaciji. Beograd, Srbija, 232 s. Available from Internet: http://www.mgsi.gov.rs/sites/default/files/Projekti,%20srpski%20Z,%202014..pdf (in Serbian).

Nalbantoglu, Z.; Gucbilmez, E. 2002. Utilization of an industrial waste in calcareous expansive clay stabilization, Geotechnical Testing Journal 25(1): 78–84. http://doi.org/10.1520/GTJ11082J

Pandian, N. S.; Krishna, K. C.; Leelavathamma, B. 2002. Effect of fly ash on the CBR behaviour of soils, in Geotechnical Engineering, Environmental Challenges: Indian Geotechnical Conference, 20–22 December 2002, Allahabad, India, 1: 183–186.

Parsons, R. L. 2002. Subgrade Improvement Through Fly Ash Stabilization. Report, Kansas University Transportation Center, US. 16 p.

Parsons, R. L.; Kneebone, E. 2005. Field performance of fly ash stabilised subgrades, Proceedings of the Institution of Civil Engineers – Ground Improvement 9(1): 33–38. http://doi.org/10.1680/grim.2005.9.1.33

Popovic, A.; Djordjevic, D. 2015a. Trace and major elements in ash of “Nikola Tesla A” power plant dump (I) – leached concentrations and environmental implications, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37(11): 1224–1232. http://doi.org/10.1080/15567036.2011.606872

Popovic, A.; Djordjevic, D. 2015b. Trace and major elements in ash of “Nikola Tesla A” power plant dump (II) – associations of elements in active cassette ash, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37(12): 1291–1299. http://doi.org/10.1080/15567036.2011.615804

Popović, Z.; Lazarević, L. 2013. The role of railway in the European transport policy, Izgradnja 67(7): 285–291.

Popović, Z.; Lazarević, L.; Ižvolt, L. 2013. Potential of the Railway infrastructure in Serbia, Railway Transport and Logistics: Scientific-Technical Journal for Railway Transport and Carriage, Logistics and Management 9(3): 9–22.

Popović, Z.; Trpčevski, F.; Pančić, I.; Lazarević, L. 2014. Harmonizacija evropskog kvaliteta koloseka – Harmonization of European track quality, Građevinski materijali i konstrukcije – Building Materials and Structures 57(1): 29–44. http://doi.org/10.5937/grmk1401029P

Prel, G. 2002. Embankment for Railway Construction of the LGV Line (2002–2003). Presentation, Paris, France. 24 p.

Puzavac, L.; Popović, Z.; Lazarević, L. 2012. Influence of track stiffness on track behaviour under vertical load, Promet – Traffic&Transportation 24(5): 405–412. http://doi.org/10.7307/ptt.v24i5.1176

Ramadas, T. L.; Kumar, N. D.; Yesuratnam, G. 2012. A study on strength and swelling characteristics of three expansive soils treated with fly ash, in International Symposium on Ground Improvement (IS-GI BRUSSELS 2012): Recent Research, Advances & Execution Aspects of Ground Improvement Works, 31 May – 1 June 2012, Brussels, Belgium, 2: 459–466.

Senol, A.; Edil, T. B.; Bin-Shafique, M. S.; Acosta, H. A.; Benson, C. H. 2006. Soft subgrades’ stabilization by using various fly ashes, Resources, Conservation and Recycling 46(4): 365–376. http://doi.org/10.1016/j.resconrec.2005.08.005

SRPS CEN ISO/TS 17892-3:2012. Geotehničko istraživanje i ispitivanje – Laboratorijsko ispitivanje tla – Deo 3: Određivanje mase jedinične zapremine čestica piknometarskom metodom [Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 3: Determination of Particle Density – Pycnometer Method] (in Serbian).

SRPS CEN ISO/TS 17892-4:2011. Geotehničko istraživanje i ispitivanje – Laboratorijsko ispitivanje tla – Deo 4: Određivanje granulometrijskog sastava [Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 4: Determination of Particle Size Distribution] (in Serbian).

SRPS CEN ISO/TS 17892-5:2011. Geotehničko istraživanje i ispitivanje – Laboratorijsko ispitivanje tla – Deo 5: Edometarsko ispitivanje stepenastim opterećenjem [Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 5: Incremental Loading Oedometer Test] (in Serbian).

SRPS CEN ISO/TS 17892-10:2011. Geotehničko istraživanje i ispitivanje – Laboratorijsko ispitivanje tla – Deo 10: Ispitivanje direktnog smicanja [Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 10: Direct Shear Tests] (in Serbian).

SRPS CEN ISO/TS 17892-12:2011. Geotehničko istraživanje i ispitivanje – Laboratorijsko ispitivanje tla – Deo 12: Određivanje Aterbergovih granica [Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 12: Determination of Atterberg Limits] (in Serbian).

SRPS EN 13286-47:2012. Nevezane i hidrauličkim vezivom vezane mešavine – Deo 47: Metode ispitivanja za određivanje kalifornijskog indeksa nosivosti, neposrednog indeksa nosivosti i linearnog bubrenja [Unbound and Hydraulically Bound Mixtures – Part 47: Test Method for the Determination of California Bearing Ratio, Immediate Bearing Index and Linear Swelling] (in Serbian).

SRPS U.B1.034:1970. Geomehanička ispitivanja – Određivanje koeficijenata vodopropustljivosti [Testing of Soils – Determination of Coefficient of Permeability] (in Serbian).

SRPS U.B1.038:1997. Geomehanička ispitivanja – Određivanje odnosa vlažnosti i suve zapreminske mase tla [Testing of Soil – Determination of the Relation Moisture Content – Density of Soil] (in Serbian).

SRPS U.B1.050:1970. Geomehanička ispitivanja – Ispitivanje otpornosti cementom stabilizovanog tla prema mrazu [Testing of Soils – Resistance Cement Stabilized Soils to Freezing] (in Serbian).

UIC. 1994. Earthworks and Track-Bed Layers for Railway Lines. UIC Code 719 R. International Union of Railways (UIC). UIC Leaflet, Paris, France, 117 p.

Vukićević, M.; Pujević, V.; Marjanović, M.; Jocković, S.; Maraš-Dragojević, S. 2015. Stabilization of fine-grained soils using non self-cementing fly ash, Građevinar 67(8): 761–770. http://doi.org/10.14256/JCE.1281.2014

Vukićević, M.; Pujević, V.; Marjanović, M.; Jocković, S.; Maraš-Dragojević, S. 2013. Research results of fine-grained soil stabilization using fly ash from Serbian electric power plants, in 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2–6 September 2013, Paris, France, 4: 3267–3270. Available from Internet: http://www.issmge.org/uploads/publications/1/2/3267-3270.pdf

Zia, N.; Fox, P. 2000. Engineering properties of loess-fly ash mixtures for roadbase construction, Transportation Research Record: Journal of the Transportation Research Board 1714: 49–56. http://dx.doi.org/10.3141/1714-07

Železnice Srbije. 2012. Pravilnik o projektovanju rekonstrukcije i izgradnje određenih elemenata železničke infrastrukture pojedinih magistralnih železničkih pruga [Technical regulation for reconstruction of infrastructure elements on main rail lines]. Available from Internet: http://demo.paragraf.rs/demo/combined/Old/t/t2012_10/t10_0286.htm (in Serbian).

Železnice Srbije. 2006. Uputstvo 338 za kontrolu zbijenosti planuma železničke pruge korišćenjem [Technical guide No. 338 for compaction control of track formation using the light drop weight device]. 14 s. (in Serbian).