Share:


Evaluation of the use of GPR in quality control of asphalt pavement layers

Abstract

The optimum density and air-voids content of asphalt pavement layers are among the main indicators of the durability of asphalt road pavement. The asphalt pavement with insufficient density is less resistant to traffic loading and the damaging effects caused by water. Air-voids ensure the durability of asphalt pavement and the accumulation of free bitumen during a period of hot weather. At present, the main ways to control the quality of compaction and the content of air-voids is to drill core specimens and test them in the laboratory. This method is expensive, it damages the road surface, and the quality of asphalt pavement is verified only at several points. With the rapid development of new technologies, it is necessary to evaluate and to apply innovative non-destructive methods, allowing us to determine the qualitative characteristics of asphalt pavement across the entire length of the road without causing the damage to the road surface and at lower costs. This article describes the use of Ground Penetrating Radar to determine asphalt pavement density and air-voids content provides an overview of global practices and feasibility analysis on the application of Ground Penetrating Radar on the roads of Lithuanian.


Article in Lithuanian.


Georadaro taikymas asfalto dangų įrengimo kokybei įvertinti


Santrauka


Asfalto dangos sluoksnių optimalus tankis ir oro tuštymių kiekis yra vieni iš pagrindinių dangos ilgaamžiškumo rodiklių. Nepakankamo tankio danga yra mažiau atspari automobilių eismo apkrovoms ir žalingam vandens poveikiui. Oro tuštymės užtikrina dangos ilgaamžiškumą ir laisvojo bitumo akumuliavimą karštuoju metų laikotarpiu. Šiuo metu pagrindinis būdas kontroliuoti sutankinimą ir oro tuštymių kiekį yra gręžti kernus ir juos bandyti laboratorijoje. Šis metodas yra brangus, gadinama kelio danga ir asfalto dangos kokybė patikrinama tik keliuose taškuose. Sparčiai vystantis technologijoms būtina įvertinti ir taikyti inovatyvius neardančiuosius metodus, leidžiančius kokybinius asfalto dangos rodiklius nustatyti neardant dangos, išilgai viso kelio ir mažesnėmis sąnaudomis. Šiame straipsnyje pateikta georadaro (angl. Ground Penetrating Radar) taikymo asfalto dangai sutankinti ir oro tuštymių kiekiui nustatyti pasaulinės praktikos apžvalga ir panaudojimo Lietuvos automobilių keliuose galimybių analizė.


Reikšminiai žodžiai: asfalto danga, didžiausias tankis, georadaras (GPR), oro tuštymių kiekis, sutankinimas, tariamasis tankis.

Keyword : asphalt pavement, compaction, air voids content, bulk density, maximum density, Ground Penetrating Radar (GPR)

How to Cite
Baltrušaitis, A., & Vaitkus, A. (2018). Evaluation of the use of GPR in quality control of asphalt pavement layers. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.3265
Published in Issue
Sep 28, 2018
Abstract Views
3243
PDF Downloads
633
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ameri, M., Kashani Novin, M., & Yousefi, B. (2014). Comparison of the field measurements of asphalt concrete densities obtained by ground-penetrating radar, pavement quality indicator and the borehole coring methods. Road Materials and Pavement Design, 15(4), 759-773. https://doi.org/10.1080/14680629.2014.909874

Belgian Road Reasearch Center. (2016). Methodologies for the use of ground-penetrating radar in pavement condition surveys. Method of measurement.

FGSV 443 A. (2016). Arbeitspapier Anwendung des Georadars zur Substanzbewertung von Straßen Teil A Bestimmung von Schichtdicken des Oberbaus von Verkehrsflächenbefestigungen mit dem Georadar-Impulssystem. German: Ausgabe.

Fernandes, F. M., Fernandes, A., & Pais, J. (2017). Assessment of the density and moisture content of asphalt mixtures of road pavements. Construction and Building Materials, 154, 1216-1225. https://doi.org/10.1016/j.conbuildmat.2017.06.119

Jol, H. M. (Ed.). (2008). Ground penetrating radar theory and applications. Amsterdam: Elsevier.

Lalagüe, A. (2015). Use of ground penetrating radar for transportation infrastructure maintenance. Norwegian University of Science and Technology.

Leng, Z. (2011). Prediction of in-situ asphalt mixture density using ground penetrating radar: theoretical development and field verification. University of Illinois at Urbana-Champaign.

Leng, Z., Al-Qadi, I. L., & Lahouar, S. (2011). Development and validation for in situ asphalt mixture density prediction models. NDT and E International, 44(4), 369-375. https://doi.org/10.1016/j.ndteint.2011.03.002

Maser, K., & Carmichael, A. (2015). Ground penetrating radar evaluation of new pavement density (No. WA-RD 839.1). Washington State Department of Transportation.

PANK 4122. (2008). Air void content of asphalt pavement, ground penetrating radar method. Accepted first 10/26/1999 and revised 5/9/2008.

Pellinen, T., Huuskonen-Snicker, E., Eskelinen, P., & Martinez, P. O. (2015). Representative volume element of asphalt pavement for electromagnetic measurements. Journal of Traffic and Transportation Engineering (English edition), 2(1), 30-39. https://doi.org/10.1016/j.jtte.2015.01.003

Poikajärvi, J., Peisa, K., Herronen, T., Aursand, P. O., Maijala, P., & Narbro, A. (2012). GPR in road investigations–equipment tests and quality assurance of new asphalt pavement. Nondestructive Testing and Evaluation, 27(3), 293-303. https://doi.org/10.1080/10589759.2012.695786

Roimela, P. (1998). Ground penetrating radar surveys in pavement quality control 1996–1997. In Tielaitoksen Selvityksiä (Vol. 4 p. 55). Rovaniemi, Finland.

Saarenketo, T. (2009). Measuring electromagnetic properties of asphalt for pavement quality control and defect mapping. Roadscanners, Ravaniemi, Finland.

Saarenketo, T. (1997). Using ground-penetrating radar and dielectric probe measurements in pavement density quality control. Transportation Research Record: Journal of the Transportation Research Board, 1575, 34-41. https://doi.org/10.3141/1575-05

Saarenketo, T. (2006). Electrical properties of road materials and subgrade soils and the use of ground penetrating radar in traffic infrastructure surveys (Academic dissertation). Faculty of Science, Department of Geosciences, University of Oulu, Finland.

Saarenketo, T., & Roimela, P. (1998, May). Ground penetrating radar technique in asphalt pavement density quality control. In Proceedings of the seventh international conference on ground penetrating radar (Vol. 2, pp. 461-466). Lawrence Kansas.

Saarenketo, T., & Scullion, T. (2000). Road evaluation with ground penetrating radar. Journal of Applied Geophysics, 43(2-4), 119-138. https://doi.org/10.1016/S0926-9851(99)00052-X

Sebesta, S., Scullion, T., & Saarenketo, T. (2013). Using infrared and high-speed ground-penetrating radar for uniformity measurements on new HMA layers. In Report S2-R06C-RR-1, Strategic Highway Research Program, National Transportation Board. Washington, D.C.

Shangguan, P., Al-Qadi, I. L., & Lahouar, S. (2014). Pattern recognition algorithms for density estimation of asphalt pavement during compaction: a simulation study. Journal of Applied Geophysics, 107, 8-15. https://doi.org/10.1016/j.jappgeo.2014.05.001

Shangguan, P., Al-Qadi, I., Coenen, A., & Zhao, S. (2016). Algorithm development for the application of ground-penetrating radar on asphalt pavement compaction monitoring. International Journal of Pavement Engineering, 17(3), 189-200. https://doi.org/10.1080/10298436.2014.973027