Share:


Investigation of planar coil

Abstract

The article describes the possibility of generation of a microsecond magnetic pulse up to 1T, invetigates planar configurations of mikroinductors and discusses the principal circuit of a magnetic field generator. The transient processes of magnetic field and temperature are calculated applying using finite element method. The Al2O3 plates are recommended for the heat dissipation.


Article in Lithuanian.


Daugiasluoksnio planarinio induktoriaus tyrimas


Santrauka


Nagrinėjamas mikrosekundinės trukmės magnetinių impulsų iki 1T generavimas. Pateikta daugiasluoksnio planarinio induktoriaus konstrukcija, leidžianti gauti homogenišką 1T magnetinį lauką. Straipsnyje pateikti elektromagnetinio lauko pasiskirstymo ir induktoriaus įšilimo skaičiavimo rezultatai, pasiūlyta konstrukcija su Al2O3 padėklu įšilimui sumažinti.


Reikšminiai žodžiai: planarinis induktorius, magnetinis laukas, IGBT, baigtinių elementų metodas, šilumos pasiskirstymas.

Keyword : planar inductor, magnetic field, IGBT, finite element method, heat distribution

How to Cite
Lučinskis, A. (2018). Investigation of planar coil. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.2817
Published in Issue
Oct 9, 2018
Abstract Views
632
PDF Downloads
429
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Grainys, A. ir Novickij, J. (2010). The Investigation of 3D magnetic field distribution in multilayer coils. Elektronika ir elektrotechnika, 103(7).

Grainys, A. (2012). Mikrosekundinės trukmės magnetinių impulsų generatorius. Mokslas – Lietuvos ateitis / Science – Future of Lithuania (Elektronika ir elektrotechnika / Electronics and Electical Engineering), 4(1), 63-66.

Kardos, J. T., & Rabussay P. D. (2012). Contactless magneto-permeabilization for intracellular plasmid DNA delivery in vivo. HumanVaccines & Immuno therapeutics, 8(11), 1707-1713. https://doi.org/10.4161/hv.21576

Liu D., et al. (2012). Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields, Nanoletters, 12(10), 5117-5121. https://doi.org/10.1021/nl301928z

Matthew, J., Callaghan, et al. (2008). Pulsed elektromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plastic and Reconstructive Surgery, 121(1), 130-141. https://doi.org/10.1097/01.prs.0000293761.27219.84

Novickij, V., Grainys, A. ir Novickij. J. (2013). Finite element method analysis of microfluidic channel with integrated dielectrophoresis electrodes for biological cell permeabilization and manipulation. Measurement Science Review, 13(3), 152-156. https://doi.org/10.2478/msr-2013-0024

Reberšek, M., & Miklavčič, V. (2011). Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika, 52(2011), 1, 12-19. https://doi.org/10.1080/00051144.2011.11828399