Share:


Research on the physical and chemical properties of sewage treatment sludge biochar and its preparation for wastewater

Abstract

Treatment and recycling of sludge waste have developed into a research focus in recent years. Today, nutrient recovery from wastewater and sludge has received much attention from regulators, academia, industry, and the general public. Institutions and governments around the globe are now seeking innovation to implement a “circular economy” for sewage sludge usage. The development of cost-effective and environmentally friendly disposal processes is necessary to meet political demands. In developing countries, common approaches to the treatment such as incineration and landfilling, cause unwanted secondary pollution. The study aims to determine sewage sludge biochar’s physical and chemical properties and its preparation for wastewater treatment. The chosen chemical properties of sewage sludge biochar were electrical conductivity (EC), total organic carbon (%) content, physical properties were volatile solids, ash content, and also conducted phosphorus leaching experiment. It was determined that by increasing the pyrolysis temperature, the electrical conductivity (from 665 µS/cm to 277 µS/cm) and total organic carbon (from 29.03% to 17.25%) measurements decreased. By increasing the pyrolysis temperature, the ash content (from 50.07% to 69.45%), and volatile solids (from 53.61% to 74.55%) measurements increased.


Article in English.


Nuotekų dumblo bioanglies fizikinių ir cheminių savybių tyrimai ir paruošimas nuotekų valymui


Dumblo atliekų apdorojimas ir perdirbimas pastaraisiais metais tapo mokslinių tyrimų centru. Šiandien maistingųjų medžiagų atgavimas iš nuotekų ir dumblo sulaukė daug akademinės bendruomenės, pramonės ir plačiosios visuomenės dėmesio. Institucijos ir vyriausybės visame pasaulyje dabar ieško naujovių, siekdamos įgyvendinti nuotekų dumblo naudojimą žiedinėje ekonomikoje. Ekonomiškai efektyvių ir aplinką tausojančių šalinimo procesų plėtra yra būtina siekiant patenkinti politinius reikalavimus. Besivystančiose šalyse įprasti panaudojimo metodai, tokie kaip deginimas ir šalinimas sąvartynuose, sukelia nepageidaujamą antrinę taršą. Darbo tikslas – nustatyti nuotekų dumblo bioanglies fizines ir chemines savybes bei paruošimą nuotekų valymui. Pasirinktos nuotekų dumblo bioanglies cheminės savybės – elektros laidumas, organinės anglies kiekis, o fizikinės savybės – lakiosios kietosios medžiagos, pelenų kiekis, taip pat atliktas fosforo išplovimo eksperimentas. Nustatyta, kad didinant pirolizės temperatūrą sumažėjo elektros laidumas (nuo 665 µS/cm iki 277 µS/cm) ir organinės anglies kiekis (nuo 29,03 % iki 17,25 %). Padidinus pirolizės temperatūrą, padidėjo pelenų kiekis (nuo 50,07 % iki 69,45 %) ir lakiųjų kietųjų dalelių kiekis (nuo 53,61 % iki 74,55 %).


Reikšminiai žodžiai: nuotekų dumblas, bioanglis, cheminės savybės, fizinės savybės.

Keyword : sewage sludge, biochar, chemical properties, physical properties

How to Cite
Paulionytė, J., & Vaiškūnaitė, R. (2023). Research on the physical and chemical properties of sewage treatment sludge biochar and its preparation for wastewater. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15. https://doi.org/10.3846/mla.2023.19431
Published in Issue
Sep 12, 2023
Abstract Views
304
PDF Downloads
255
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aplinkos apsaugos agentūra. (2019). https://aaa.lrv.lt/

Brown, S., Beecher, N., & Carpenter, A. (2010). Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environmental Science and Technology, 44(24), 9509–9515. https://doi.org/10.1021/es101210k

Cies̈ lik, B. M., Namiess̈ nik, J., & Konieczka, P. (2015). Review of sewage sludge management: Standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031

Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9

Ellen MacArthur Foundation. (2015). Towards a circular economy: Business rationale for an accelerated transition. https://ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transition

European Commission. (2008). Environmental, economic and social impacts of the use of sewage sludge on land (Final Report). https://rpaltd.co.uk/wp-content/uploads/2023/03/j661-sewagesludge-finalreport-pubd.pdf

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048

Grobelak, A., Czerwińska, K., & Murtaś, A. (2019). General considerations on sludge disposal, industrial and municipal sludge. In Industrial and municipal sludge: Emerging concerns and scope for resource recovery (pp. 135–153). Elsevier. https://doi.org/10.1016/B978-0-12-815907-1.00007-6

Januševičius, T., Mažeikienė, A., Danila, V., & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery, 1, 1–10. https://doi.org/10.1007/s13399-021-02295-y

Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y., & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102, 137–143. https://doi.org/10.1016/j.jaap.2013.03.004

Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.

Praspaliauskas, M., & Pedišius, N. (2017). A review of sludge characteristics in Lithuania’s wastewater treatment plants and perspectives of its usage in thermal processes. Renewable and Sustainable Energy Reviews, 67, 899–907. https://doi.org/10.1016/j.rser.2016.09.041

Raj, A., Yadav, A., Arya, S., Sirohi, R., Kumar, S., Rawat, A. P., Thakur, R. S., Patel, D. K., Bahadur, L., & Pandey, A. (2021). Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. Science of the Total Environment, 795, 148722. https://doi.org/10.1016/j.scitotenv.2021.148722

Sadaka, S., Sharara, M. A., Ashworth, A., Keyser, P., Allen, F., & Wright, A. (2014). Characterization of biochar from switchgrass carbonization. Energies, 7(2), 548–567. https://doi.org/10.3390/en7020548

Smider, B., & Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems & Environment, 191, 99–107. https://doi.org/10.1016/j.agee.2014.01.024

Yang, X., Wang, H., Strong, P. J., Xu, S., Liu, S., Lu, K., Sheng, K., Guo, J., Che, L., He, L., Ok, Y. S., Yuan, G., Shen, Y., & Chen, X. (2017). Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies, 10(4), 469. https://doi.org/10.3390/en10040469

Zhang, Q., Hu, J., Lee, D. J., Chang, Y., & Lee, Y. J. (2017). Sludge treatment: Current research trends. Bioresource Technology, 243, 1159–1172. https://doi.org/10.1016/j.biortech.2017.07.070

Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 112, 201–213. https://doi.org/10.1016/j.jaap.2015.01.025