Application of software, representing cumulonimbus clouds, in air traffic control
Abstract
In this paper we attempt to answer the question of whether the display of cumulonimbus clouds on air traffic controller radar screens has a significant impact on air traffic control. The developed cumulonimbus cloud mapping simulator allowed the study to be performed by performing simulations with a flight control simulator. This allowed an assessment of how the air traffic controller makes decisions when cumulonimbus is displayed and when it is not. The benefits of cumulonimbus imaging for aircraft trajectories and flight time were also assessed. The research was conducted in the space of Vilnius terminal manoeuvring area.
Article in English.
Programinės įrangos, atvaizduojančios kamuolinius liūtinius debesis, pritaikymas skrydžiams valdyti
Santrauka
Šiame darbe bandoma atsakyti į klausimą, ar kamuolinių debesų rodymas skrydžių vadovų radarų ekranuose turi reikšmingą įtaką skrydžių valdymui. Sukurtas kumuolinių debesų žemėlapių sudarymo simuliatorius leido atlikti tyrimą vykdant simuliacijas su skrydžio valdymo treniruokliu. Buvo įvertinta, kaip skrydžių vadovas priima sprendimus, kai rodomi kamuoliniai debesys ir kai ne. Taip pat aptarta kamuolinių debesų vaizdo gavimo nauda orlaivių trajektorijoms ir skrydžio laikui. Tyrimas atliktas Vilniaus terminalo manevravimo zonos erdvėje.
Reikšminiai žodžiai: kamuoliniai liūtiniai debesys, orų radaras, skrydžių valdymo zona, orlaivio radaras, kamuolinių debesų atvaizdavimas.
Keyword : cumulonimbus, weather radar, air traffic control, on board radar, cumulonimbus mapping
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Fukao, S., & Hamazu, K. (2014). Radar for meteorological and atmospheric observations. Springer. https://doi.org/10.1007/978-4-431-54334-3
Graf, M., & Werth, J. (2014, December). Airborne weather radar limitations. NOAA’s National Weather Service. https://www.weather.gov/media/publications/front/14dec-front.pdf
Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H.-y., Thobois, L., Dimri, A. P., … Neto, F. L. A. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176(5), 1869–1921. https://doi.org/10.1007/S00024-019-02168-6
Houze Jr., R. A., Schmid, W., Fovell, R. G., & Schiesser, H.-H. (1993). Hailstorms in Switzerland: Left movers, right movers, and false hooks. Monthly Weather Review, 121(12), 3345–3370. https://doi.org/10.1175/1520-0493(1993)121<3345:HISLMR>2.0.CO;2
Ohneiser, O., Kleinert, M., Muth, K., Gluchshenko, O., Ehr, H., Groß, N., & Temme, M.-M. (2019, September 08–12). Bad weather highlighting: Advanced visualization of severe weather and support in air traffic control displays. In IEEE/AIAA Digital Avionics Systems Conference (pp. 1–10). IEEE. https://doi.org/10.1109/DASC43569.2019.9081773
Pagé, C. (2011). Understanding aviation meteorology and weather hazards with ground-based observations. In D. Cimini, G. Visconti, & F. Marzano (Eds.), Integrated ground-based observing systems (pp. 161–173). Springer. https://doi.org/10.1007/978-3-642-12968-1_9
Rimkus, E. (2011). Meteorologijos įvadas. Vilniaus universitetas. http://www.hkk.gf.vu.lt/wordpress/wp-content/uploads/2012/02/Meteorologijos-pagrindai_PDF.pdf
SESAR Joint Undertaking. (2019). SESAR Solutions Catalogue 2019 (3rd ed.). https://www.sesarju.eu/sites/default/files/documents/reports/SESAR_Solutions_Catalogue_2019_web.pdf
Tuomola, L. (2021). Cumulonimbus cloud detection with weather radar at Helsinki-Vantaa airport [Master’s thesis]. University of Helsinki.
Yang, Y. (2018). Practical method for 4-dimentional strategic air traffic management problem with convective weather uncertainty. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1697–1708. https://doi.org/10.1109/TITS.2017.2730229