Positioning and control of scanning electrochemical microscopy
Abstract
Positioning problems of scanning electrochemical microscopy (SECM) are very important by means of living cells damaging by moving ultramicroelectrode (UME). The working principle and operating modes of SECM are introduced. Investigation of redox activity of living cells are outlined. Problems, which arise in investigations of living cells by constant distance and constant height modes are discussed. Technical challenges and advances in application of SECM in living cell investigations are provided.
Article in English.
Skenuojančiojo elektrocheminio mikroskopo pozicionavimas ir valdymas
Santrauka
Tinkamas skenuojančiojo elektrocheminio mikroskopo (SECM) ultramikroelektrodo (UME) pozicionavimas yra aktualus eksperimentuojant su gyvomis ląstelėmis, nes gali pažeisti ląstelių paviršių. Šiame straipsnyje pateikiami SECM veikimo principas ir darbo režimai. Nagrinėjamas gyvų ląstelių oksidavimo ir redukavimo aktyvumas. Straipnyje pateikiama problemų, kurių kyla matuojant pastovaus aukščio ir pastovaus atstumo metodais, analizė. Pateikiami techniniai pozicionavimo sprendimai, iššūkiai ir progresas, taikant matuoti SECM gyvoms ląstelėms.
Reikšminiai žodžiai: skenuojantysis elektrocheminis mikroskopas, gyvos ląstelės, ultramikroelektrodas, žmogaus ląstelės, priartėjimo kreivės, šlyties jėgos SECM.
Keyword : scanning electrochemical microscopy, living cells, ultramicroelectrode, human cells, approaching curves, shear- force SECM
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ballesteros Katemann, B.; Schulte, A.; Schuhmann, W. 2003a. Constant-distance mode scanning electrochemical microscopy (SECM) – Part I: adaptation of a non-optical shear-force-based positioning mode for SECM tips, Chemistry 9(9): 2025–2033. https://doi.org/10.1002/chem.200204267
Ballesteros Katemann, B.; Schulte, A.; Schuhmann, W. 2003b. Constant‐distance mode scanning electrochemical microscopy (SECM) – Part I: adaptation of a non‐optical shear‐force‐based positioning mode for SECM tips, Chemistry-A European Journal 9(9): 2025–2033. https://doi.org/10.1002/chem.200204267
Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. 1989. Scanning electrochemical microscopy. Introduction and principles, Analytical Chemistry 61(2): 132–138. https://doi.org/10.1021/ac00177a011
Bard, A. J.; Mirkin, M. V. 2001. Scanning electrochemical microscopy. NY: Marcel Dekker. https://doi.org/10.1201/9780203910771
Comstock, D. J.; Elam, J. W.; Pellin, M. J.; Hersam, M. C. 2010. Integrated ultramicroelectrode − nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy, Analytical chemistry 82(4): 1270–1276. https://doi.org/10.1021/ac902224q
Cornut, R.; Bhasin, A.; Lhenry, S.; Etienne, M.; Lefrou, C. 2011. Accurate and simplified consideration of the probe geometrical defaults in scanning electrochemical microscopy: theoretical and experimental investigations, Analytical Chemistry 83(24): 9669–9675. https://doi.org/10.1021/ac2026018
Eckhard, K.; Shin, H.; Mizaikoff, B.; Schuhmann, W.; Kranz, C. 2007. Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM), Electrochemistry Communications 9(6): 1311–1315. https://doi.org/10.1016/j.elecom.2007.01.027
Hengstenberg, A.; Kranz, C.; Schuhmann, W. 2000. Facilitated tip-positioning and applications of non-electrode tips in scanning electrochemical microscopy using a shear force based constant-distance mode, Chemistry – A European Journal 6(9): 1547–1554. https://doi.org/10.1002/(SICI)1521–3765(20000502)6:9<1547::AID-CHEM1547>3.3.CO;2–3
Hirano, Y.; Oyamatsu, D.; Yasukawa, T.; Shiku, H.; Matsue, T. 2004. Scanning electrochemical microscopy for protein chip Imaging and shear force feedback regulation of substrate-pro-be distance, Electrochemistry 72: 137–142.
Ivanauskas, F.; Morkvenaite-Vilkonciene, I.; Astrauskas, R.; Ramanavicius, A. 2016. Modelling of scanning electrochemical microscopy at redox competition mode using diffusion and reaction equations, Electrochimica Acta 222: 347–354. https://doi.org/10.1016/j.electacta.2016.10.179
James, P. I.; Garfias‐Mesias, L. F.; Moyer, P. J.; Smyrl, W. H. 1998. Scanning electrochemical microscopy with simultaneous independent topography, Journal of The Electrochemical Society 145: L64–L66. https://doi.org/10.1149/1.1838417
Kaya, T.; Torisawa, Y.-S.; Oyamatsu, D.; Nishizawa, M.; Matsue, T. 2003. Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy (SECM). A comparison with fluorescence viability monitoring, Biosensors and Bioelectronics 18(11): 1379–1383. https://doi.org/10.1016/S0956–5663(03)00083–6
Kranz, C.; Wiedemair, J. 2008. Scanning force microscopy based amperometric biosensors, Analytical and Bioanalytical Chemistry 390(1): 239–243. https://doi.org/10.1007/s00216–007–1670–8
Lau, K.; Berquand, A.; Baker, M. J. 2014. A proof of principle study on the extraction of biochemical and biomechanical properties from the same tumour cells using 3D confocal Raman and atomic force microscopy imaging – towards a better understanding of tumour progression, Biomedical Spectroscopy and Imaging 3(3): 237–247.
Li, J. P.; Yu, J. G. 2008. Fabrication of Prussian Blue modified ultramicroelectrode for GOD imaging using scanning electrochemical microscopy, Bioelectrochemistry 72(1): 102–106. https://doi.org/10.1016/j.bioelechem.2007.11.013
Ludwig, M.; Kranz, C.; Schuhmann, W.; Gaub, H. E. 1995. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample, Review of scientific instruments 66: 2857–2860. https://doi.org/10.1063/1.1145568
Macpherson, J. V.; Unwin, P. R.; Hillier, A. C.; Bard, A. J. 1996. In-Situ imaging of ionic crystal dissolution using an integra-ted electrochemical/AFM Probe, Journal of the American Chemical Society 118(27): 6445–6452. https://doi.org/10.1021/ja960842r
Morkvenaite-Vilkonciene, I.; Genys, P.; Ramanaviciene, A.; Ramanavicius, A. 2015. Scanning electrochemical impedance microscopy for investigation of glucose oxidase catalyzed reaction, Colloids and Surfaces B: Biointerfaces 126: 598–602. https://doi.org/10.1016/j.colsurfb.2015.01.007
Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. 2014. Redox competition and generation-collection modes based scanning electrochemical microscopy for the evaluation of immobilised glucose oxidase-catalysed reactions, RSC Advances 4(91): 50064–50069. https://doi.org/10.1039/C4RA08697J
Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. 2016. 9,10-Phenanthrenequinone as a redox mediator for the imaging of yeast cells by scanning electrochemical microscopy, Sensors and Actuators B: Chemical 228: 200–206. https://doi.org/10.1016/j.snb.2015.12.102
Morkvenaite-Vilkonciene, I.; Valiūnienė, A.; Petroniene, J.; Ramanavicius, A. 2017. Hybrid system based on fast Fourier transform electrochemical impedance spectroscopy combined with scanning electrochemical microscopy, Electrochemistry Communications 83: 110–112. https://doi.org/10.1016/j.elecom.2017.08.020
Nebel, M.; Eckhard, K.; Erichsen, T.; Schulte, A.; Schuhmann, W. 2010. 4D Shearforce-based constant-distance mode scanning electrochemical microscopy, Analytical Chemistry 82(18): 7842–7848. https://doi.org/10.1021/ac1008805
Shiku, H.; Shiraishi, T.; Aoyagi, S.; Utsumi, Y.; Matsudaira, M.; Abe, H.; Hoshi, H.; Kasai, S.; Ohya, H.; Matsue, T. 2004. Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy, Analytica chimica acta 522(1): 51–58. https://doi.org/10.1016/j.aca.2004.06.054
Shiku, H.; Shiraishi, T.; Ohya, H.; Matsue, T.; Abe, H.; Hoshi, H.; Kobayashi, M. 2001. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy, Analytical chemistry 73(15): 3751–3758. https://doi.org/10.1021/ac010339j
Torisawa, Y.-S.; Kaya, T.; Takii, Y.; Oyamatsu, D.; Nishizawa, M.; Matsue, T. 2003. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures, Analytical chemistry 75(9): 2154–2158. https://doi.org/10.1021/ac026317u
Torisawa, Y.-S.; Shiku, H.; Yasukawa, T.; Nishizawa, M.; Matsue, T. 2005. Three-dimensional micro-culture system with a silicon-based cell array device for multi-channel drug sensitivity test, Sensors and Actuators B: Chemical 108(1–2): 654–659. https://doi.org/10.1016/j.snb.2004.11.045
Yasukawa, T.; Hirano, Y.; Motochi, N.; Shiku, H.; Matsue, T. 2007. Enzyme immunosensing of pepsinogens 1 and 2 by scanning electrochemical microscopy, Biosensors & Bioelectronics 22(12): 3099–3104. https://doi.org/10.1016/j.bios.2007.01.015
Yasukawa, T.; Kondo, Y.; Uchida, I; Matsue, T. 1998. Imaging of cellular activity of single cultured cells by scanning electrochemical microscopy, Chemistry Letters 27(8): 767–768. https://doi.org/10.1246/cl.1998.767
Zhao, C.; Wittstock, G. 2005. Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as enzyme label, Biosens Bioelectron 20(7): 1277–1284. https://doi.org/10.1016/j.bios.2004.04.019
Zhu, L. L.; Gao, N.; Zhang, X. L.; Jin, W. R. 2008. Accurately measuring respiratory activity of single living cells by scanning electrochemical microscopy, Talanta 77(2): 804–808. https://doi.org/10.1016/j.talanta.2008.07.050