Exploring the properties of cost overrun risk propagation network (CORPN) for promoting cost management
Abstract
Construction cost overrun chronically plagues contractors. To address the issue, numerous studies have explored cost overrun risks (CORs). Nevertheless, their methods of identifying risk relationship are susceptible to experts’ experience. In addition, they fail to unearth the relationship structure information and analyze the risk propagation effect. To fill these gaps, this paper intends to propose a methodology that integrates the engineering case analysis and complex network theory, so as to obtain a stable relationship structure and reveal its inherent property. First, 52 CORs and 158 risk paths are extracted from 156 engineering cases, followed by the establishment of a cost overrun risk propagation network (CORPN). Finally, the statistical properties of CORPN are explored. The results indicate that CORPN presents the topological property of heterogeneity. A large number of risk paths can be blocked through preventing the CORs with large total degree, like delay in construction period and engineering quantity increase. Meanwhile, CORPN shows the small-world property. The efficiency of risk propagation can be reduced through preventing the CORs with high betweenness centrality, such as lack of technical skill and experience. These findings contribute to the formulation of beforehand strategies that promote the cost management.
Keyword : cost management, construction cost overrun, cost overrun risks, cost overrun risk propagation network, complex network theory, case analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Akintoye, A. S., & MacLeod, M. J. (1997). Risk analysis and management in construction. International Journal of Project Management, 15(1), 31-38. https://doi.org/10.1016/S0263-7863(96)00035-X
Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. https://doi.org/10.1103/RevModPhys.74.47
Bai, J. S. (2006). Analysis of engineering claims and contract management in hydropower project construction. Beijing: China Water & Power Press (in Chinese).
Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512. https://doi.org/10.1126/science.286.5439.509
Boateng, P., Chen, Z., Ogunlana, S., & Ikediashi, D. (2012). A system dynamics approach to risks description in megaprojects development. Organization, Technology and Management in Construction, 4(3), 593-603. https://doi.org/10.5592/otmcj.2012.3.3
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports – Review Section of Physics Letters, 424(4-5), 175-308. https://doi.org/10.1016/j.physrep.2005.10.009
Chen, G., Yang, X. H., & Xu, X. L. (2012). Weighted scaling in non-growth random networks. Communications in Theoretical Physics, 58(3), 456-462. https://doi.org/10.1088/0253-6102/58/3/24
Chen, Y., Hu, Z. G., Liu, Q., & Zhao, M. Y. (2018). Risk propagation of delayed payment in stakeholder network of large hydropower project construction considering risk resistance and mitigation. Mathematical Problems in Engineering, 8013207. https://doi.org/10.1155/2018/8013207
Cheng, Y. M. (2014). An exploration into cost-influencing factors on construction projects. International Journal of Project Management, 32(5), 850-860. https://doi.org/10.1016/j.ijproman.2013.10.003
Choudhry, R. M., Aslam, M. A., Hinze, J. W., & Arain, F. M. (2014). Cost and schedule risk analysis of bridge construction in Pakistan: Establishing risk guidelines. Journal of Construction Engineering and Management, 140(7), 04014020. https://doi.org/10.1061/(asce)co.1943-7862.0000857
Creedy, G. D., Skitmore, M., & Wong, J. K. W. (2010). Evaluation of risk factors leading to cost overrun in delivery of highway construction projects. Journal of Construction Engineering and Management, 136(5), 528-537. https://doi.org/10.1061/(asce)co.1943-7862.0000160
Crucitti, P., Latora, V., Marchiori, M., & Rapisarda, A. (2003). Efficiency of scale-free networks: Error and attack tolerance. Physica A: Statistical Mechanics and Its Applications, 320, 622-642. https://doi.org/10.1016/s0378-4371(02)01545-5
Deng, Y., Song, L., Zhou, Z., & Liu, P. (2017). An approach for understanding and promoting coal mine safety by exploring coal mine risk network. Complexity, 7628569. https://doi.org/10.1155/2017/7628569
Derakhshanalavijeh, R., & Teixeira, J. M. C. (2017). Cost overrun in construction projects in developing countries, gas-oil industry of Iran as a case study. Journal of Civil Engineering and Management, 23(1), 125-136. https://doi.org/10.3846/13923730.2014.992467
Dikmen, I., Birgonul, M. T., & Han, S. (2007). Using fuzzy risk assessment to rate cost overrun risk in international construction projects. International Journal of Project Management, 25(5), 494-505. https://doi.org/10.1016/j.ijproman.2006.12.002
Doloi, H. (2013). Cost overruns and failure in project management: Understanding the roles of key stakeholders in construction projects. Journal of Construction Engineering and Management, 139(3), 267-279. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000621
Duenas-Osorio, L., & Vemuru, S. M. (2009). Cascading failures in complex infrastructure systems. Structural Safety, 31(2), 157-167. https://doi.org/10.1016/j.strusafe.2008.06.007
Eteifa, S. O., & El-adaway, I. H. (2018). Using social network analysis to model the interaction between root causes of fatalities in the construction industry. Journal of Management in Engineering, 34(1), 04017045. https://doi.org/10.1061/(asce)me.1943-5479.0000567
Eybpoosh, M., Dikmen, I., & Birgonul, M. T. (2011). Identification of risk paths in international construction projects using structural equation modeling. Journal of Construction Engineering and Management, 137(12), 1164-1175. https://doi.org/10.1061/(asce)co.1943-7862.0000382
Fidan, G., Dikmen, I., Tanyer, A. M., & Birgonul, M. T. (2011). Ontology for relating risk and vulnerability to cost overrun in international projects. Journal of Computing in Civil Engineering, 25(4), 302-315. https://doi.org/10.1061/(asce)cp.1943-5487.0000090
Flyvbjerg, B., Bruzelius, N., & Rothengatter, W. (2003a). Megaprojects and risk: An anatomy of ambition. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107050891
Flyvbjerg, B., Holm, M. K. S., & Buhl, S. L. (2003b). How common and how large are cost overruns in transport infrastructure projects?. Transport Reviews, 23(1), 71-88. https://doi.org/10.1080/01441640309904
Forcada, N., Rusinol, G., Macarulla, M., & Love, P. E. D. (2014). Rework in highway projects. Journal of Civil Engineering and Management, 20(4), 455-465. https://doi.org/10.3846/13923730.2014.893917
Gharaibeh, H. M. (2014). Cost control in mega projects using the Delphi method. Journal of Management in Engineering, 30(5), 04014024. https://doi.org/10.1061/(asce)me.1943-5479.0000218
Gonzalez, A. M. M., Dalsgaard, B., & Olesen, J. M. (2010). Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity, 7(1), 36-43. https://doi.org/10.1016/j.ecocom.2009.03.008
Hu, X. B., Gheorghe, A. V., Leeson, M. S., Leng, S. P., Bourgeois, J., & Qu, X. B. (2016). Risk and safety of complex network systems. Mathematical Problems in Engineering, 8983915. https://doi.org/10.1155/2016/8983915
Huang, W. Q., Zhuang, X. T., Yao, S., & Uryasev, S. (2016). A financial network perspective of financial institutions’ systemic risk contributions. Physica A: Statistical Mechanics and Its Applications, 456, 183-196. https://doi.org/10.1016/j.physa.2016.03.034
Huang, Y. C., Cheng, W. Y., Luo, S. D., Luo, Y., Ma, C. C., & He, T. L. (2016). Features of the asynchronous correlation between the China coal price index and coal mining accidental deaths. Plos One, 11(11), 0167198. https://doi.org/10.1371/journal.pone.0167198
Iyer, K. C., & Sagheer, M. (2010). Hierarchical structuring of PPP risks using interpretative structural modeling. Journal of Construction Engineering and Management, 136(2), 151-159. https://doi.org/10.1061/(asce)co.1943-7862.0000127
Jin, Y., Zhang, Q., & Li, S. P. (2016). Topological properties and community detection of venture capital network: Evidence from China. Physica A: Statistical Mechanics and Its Applications, 442, 300-311. https://doi.org/10.1016/j.physa.2015.09.029
Kartam, N. A. (1996). Making effective use of construction lessons learned in project life cycle. Journal of Construction Engineering and Management, 122(1), 14-21. https://doi.org/10.1061/(asce)0733-9364(1996)122:1(14)
Khanzadi, M., Eshtehardian, E., & Esfahani, M. M. (2017). Cash flow forecasting with risk consideration using Bayesian belief networks (BBNS). Journal of Civil Engineering and Management, 23(8), 1045-1059. https://doi.org/10.3846/13923730.2017.1374303
Larsen, J. K., Shen, G. Q., Lindhard, S. M., & Brunoe, T. D. (2016). Factors affecting schedule delay, cost overrun, and quality level in public construction projects. Journal of Management in Engineering, 32(1), 04015032. https://doi.org/10.1061/(asce)me.1943-5479.0000391
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701
Li, Q. M., Song, L. L., List, G. F., Deng, Y. L., Zhou, Z. P., & Liu, P. (2017). A new approach to understand metro operation safety by exploring metro operation hazard network (MOHN). Safety Science, 93, 50-61. https://doi.org/10.1016/j.ssci.2016.10.010
Li, X., & Chen, G. R. (2003). A local-world evolving network model. Physica A: Statistical Mechanics and Its Applications, 328(1-2), 274-286. https://doi.org/10.1016/s0378-4371(03)00604-6
Liu, J. Z., & Tang, Y. F. (2005). An exponential distribution network. Chinese Physics, 14(4), 643-645. https://doi.org/10.1088/1009-1963/14/4/001
Nasir, D., McCabe, B., & Hartono, L. (2003). Evaluating risk in construction-schedule model (ERIC-S): Construction schedule risk model. Journal of Construction Engineering and Management, 129(5), 518-527. https://doi.org/10.1061/(asce)0733-9364(2003)129:5(518)
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167-256. https://doi.org/10.1137/s003614450342480
Shane, J. S., Molenaar, K. R., Anderson, S., & Schexnayder, C. (2009). Construction project cost escalation factors. Journal of Management in Engineering, 25(4), 221-229. https://doi.org/10.1061/(asce)0742-597x(2009)25:4(221)
Simonsen, I. (2005). Diffusion and networks: A powerful combination!. Physica A: Statistical Mechanics and Its Applications, 357(2), 317-330. https://doi.org/10.1016/j.physa.2005.06.032
Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., & Helbing, D. (2008). Transient dynamics increasing network vulnerability to cascading failures. Physical Review Letters, 100(21), 218701. https://doi.org/10.1103/PhysRevLett.100.218701
Small, M., & Tse, C. K. (2005). Clustering model for transmission of the SARS virus: Application to epidemic control and risk assessment. Physica A: Statistical Mechanics and Its Applications, 351(2-4), 499-511. https://doi.org/10.1016/j.physa.2005.01.009
Sovacool, B. K., Gilbert, A., & Nugent, D. (2014). Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses. Energy, 74, 906-917. https://doi.org/10.1016/j.energy.2014.07.070
Tabak, B. M., Takami, M., Rocha, J. M. C., Cajueiro, D. O., & Souza, S. R. S. (2014). Directed clustering coefficient as a measure of systemic risk in complex banking networks. Physica A: Statistical Mechanics and Its Applications, 394, 211-216. https://doi.org/10.1016/j.physa.2013.09.010
Tavakolan, M., & Etemadinia, H. (2017). Fuzzy weighted interpretive structural modeling: Improved method for identification of risk interactions in construction projects. Journal of Construction Engineering and Management, 143(11), 04017084. https://doi.org/10.1061/(asce)co.1943-7862.0001395
Touran, A., & Suphot, L. (1997). Rank correlations in simulating construction costs. Journal of Construction Engineering and Management, 123(3), 297-301. https://doi.org/10.1061/(asce)0733-9364(1997)123:3(297)
Wambeke, B. W., Liu, M., & Hsiang, S. M. (2012). Using Pajek and centrality analysis to identify a social network of construction trades. Journal of Construction Engineering and Management, 138(10), 1192-1201. https://doi.org/10.1061/(asce)co.1943-7862.0000524
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics ‘small-world’ networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
Wright, E. R., Cho, K., & Hastak, M. (2014). Assessment of critical construction engineering and management aspects of nuclear power projects. Journal of Management in Engineering, 30(4), 04014016. https://doi.org/10.1061/(asce)me.1943-5479.0000286
Zhang, Y. L., & Yang, N. D. (2013). Research on robustness of R&D network under cascading propagation of risk with gray attack information. Reliability Engineering & System Safety, 117, 1-8. https://doi.org/10.1016/j.ress.2013.03.009
Zhou, Z. P., Irizarry, J., & Li, Q. M. (2014). Using network theory to explore the complexity of subway construction accident network (SCAN) for promoting safety management. Safety Science, 64, 127-136. https://doi.org/10.1016/j.ssci.2013.11.029
Zhou, J., Xu, W. X., Guo, X., & Ding, J. (2015). A method for modeling and analysis of directed weighted accident causation network (DWACN). Physica A: Statistical Mechanics and Its Applications, 437, 263-277. https://doi.org/10.1016/j.physa.2015.05.112