An artificial neural networks model for the estimation of formwork labour
Abstract
Artificial Neural Networks (ANN) is a problem solving technique imitating the basic working principles of the human brain. The formwork labour cost constitutes an important part within the costs of the reinforced concrete frame buildings. This study suggests a method based on artificial neural networks developed for estimating the required manhours for the formwork activity of such buildings. The introduced method has been verified in the study with reference to the test conducted involving two case studies. In all cases, the model produced results reasonably close to actual field measurements. The model is a simple and quick tool for the estimators and planners to aid them in their work.
Dirbtinių neuroninių tinklų modelis, kurio paskirtis – skaičiuoti klojiniams skirto darbo apimtis
Santrauka. Dirbtiniai neuroniniai tinklai (DNT) – tai problemų sprendimo metodas, imituojantis pagrindinius žmogaus smegenų veiklos principus. Statant gelžbetoninius karkasinius pastatus, nemažą sąnaudų dalį sudaro klojinių ruošimas. Šiame tyrime siūlomas dirbtiniais neuroniniais tinklais pagrįstas metodas, kurio paskirtis – apskaičiuoti, kiek žmogaus darbo valandų reikės ruošti klojinius tokiuose pastatuose. Pristatomas metodas tyrimo metu patikrintas remiantis bandymu, susijusiu su dviem atvejo tyrimais. Visais atvejais modelio pateikti rezultatai buvo gana artimi faktiniams matavimams. Modelis – tai paprastas ir greitai naudojamas įrankis, kuris pravers sąmatininkams ir planuotojams.
Reikšminiai žodžiai: dirbtiniai neuroniniai tinklai (DNT), klojinys, darbas, sąnaudos, žmogaus darbo valanda, našumas.
Keyword : Artificial Neural Networks (ANN), Formwork, Labour, Cost, Man-hour, Productivity
This work is licensed under a Creative Commons Attribution 4.0 International License.