Proposing a new methodology based on fuzzy logic for tunnelling risk assessment
Abstract
Tunnels are artificial underground spaces that provide a capacity for particular goals such as storage, under-ground transportation, mine development, power and water treatment plants, civil defence. This shows that the tunnel construction is a key activity in developing infrastructure projects. In many situations, tunnelling projects find themselves involved in the situations where unexpected conditions threaten the continuity of the project. Such situations can arise from the prior knowledge limited by the underground unknown conditions. Therefore, a risk analysis that can take into account the uncertainties associated with the underground projects is needed to assess the existing risks and prioritize them for further protective measures and decisions in order to reduce, mitigate and/or even eliminate the risks involved in the project. For this reason, this paper proposes a risk assessment model based on the concepts of fuzzy set theory to evaluate risk events during the tunnel construction operations. To show the effectiveness of the proposed model, the results of the model are compared with those of the conventional risk assessment. The results demonstrate that the fuzzy inference system has a great potential to accurately model such problems.
Keyword : risk assessment, fuzzy logic, fuzzy risk assessment, tunnelling
This work is licensed under a Creative Commons Attribution 4.0 International License.