Adaptive LOB scheduling for optimizing resource leveling and consumption
Abstract
Several techniques were developed to improve resource allocation in construction projects, yet few in repetitive construction projects. Accordingly, this research aims at minimizing resource consumption and fluctuations using Line-of-Balance (LOB) repetitive scheduling technique. An optimization model has been developed consisting of three modules: LOB schedule module, resource leveling module, and optimization module. The model helps determine the optimum (a) start time for each activity considering any needed delays to level resources, (b) number of crews travelling from one unit to another, (c) unit to change the number of crews, and (d) the new changed number of crews. Unlike the existing efforts, the developed model provides the capabilities of (a) allowing the change of number of crews of an activity at a certain repetitive unit to increase or decrease the progress rate; and (b) accommodates non-serial repetitive projects to enhance the model’s practicality. Using a pipeline project, the model outperformed the existing LOB-based models in minimizing resource consumption and fluctuations within the desired project duration. This study offers the project planners a useful tool to efficiently utilize their projects’ resources and avoid hidden costs due to inefficient resource utilization on-site as well as overcoming shortage in resource availability.
Keyword : repetitive scheduling, resource-constrained scheduling, resource leveling, optimization, resource allocation, line of balance
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Altuwaim, A., & El-Rayes, K. (2018). Optimizing the scheduling of repetitive construction to minimize interruption cost. Journal of Construction Engineering and Management, 144(7), Article 4018051. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001510
Bakry, I., Moselhi, O., & Zayed, T. (2014). Optimized acceleration of repetitive construction projects. Automation in Construction, 39, 141–151. https://doi.org/10.1016/j.autcon.2013.07.003
Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum moment method for resource leveling using entropy maximization. Journal of Construction Engineering and Management, 136(5), 518–527. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000149
Damci, A., Arditi, D., & Polat, G. (2013a). Multi resource leveling in line of balance scheduling. Journal of Construction Engineering and Management, 139(9), 1108–1116. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000716
Damci, A., Arditi, D., & Polat, G. (2013b). Resource leveling in line of balance scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679–692. https://doi.org/10.1111/mice.12038
El-Abbasy, M. S., Elazouni, A., & Zayed, T. (2016). MOSCOPEA: Multi-objective construction scheduling optimization using elitist non-dominated sorting genetic algorithm. Automation in Construction, 71, 153–170. https://doi.org/10.1016/j.autcon.2016.08.038
El-Rayes, K., & Moselhi, O. (2001). Optimizing resource utilization for repetitive construction projects. Journal of Construction Engineering and Management, 127(1), 18–27. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:1(18)
El-Rayes, K., & Jun, D. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172–80. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000097
García-Nieves, J. D., Ponz-Tienda, J. L., Salcedo-Bernal, A., & Pellicer, E. (2018). The multimode resource-constrained project scheduling problem for repetitive activities in construction projects. Computer-Aided Civil and Infrastructure Engineering, 33, 655–671. https://doi.org/10.1111/mice.12356
García-Nieves, J. D., Ponz-Tienda, J. L., Ospina-Alvarado, A., & Bonilla-Palacios, M. (2019). Multipurpose linear programming optimization model for repetitive activities scheduling in construction projects. Automation in Construction, 105, Article 102799. https://doi.org/10.1016/j.autcon.2019.03.020
Harris, R. B., & Ioannou, P. G. (1998). Scheduling projects with repeating activities. Journal of Construction Engineering and Management, 124(4), 269–278. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:4(269)
Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., & Prasath, V. B. S. (2019). Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information, 10(12), Article 390. https://doi.org/10.3390/info10120390
Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of Construction Engineering and Management, 125(3), 167–175. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:3(167)
Hegazy, T., & Kamarah, E. (2008). Efficient repetitive scheduling for high-rise construction. Journal of Construction Engineering and Management, 134(4), 253–264. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:4(253)
Hegazy, T., & Wassef, N. (2001). Cost optimization in projects with repetitive non-serial activities. Journal of Construction Engineering and Management, 127(3), 183–191. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:3(183)
Hegazy, T., Saad, D. A., & Mostafa, K. (2020). Enhanced repetitive-scheduling computation and visualization. Journal of Construction Engineering and Management, 146(10), Article 04020118. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001911
Hegazy, T., Mostafa, K., & Ojulari, S. (2021). Tetris-inspired approach for generating tightly-packed repetitive schedules. Automation in Construction, 124, Article 103601. https://doi.org/10.1016/j.autcon.2021.103601
Hyari, K., & El-Rayes, K. (2006). Optimal planning and scheduling for repetitive construction projects. Journal of Management in Engineering, 22(1), 11–19. https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(11)
Ioannou, P. G., & Yang, I. T. (2016). Repetitive scheduling method: Requirements, modeling, and implementation. Journal of Construction Engineering and Management, 152(5), Article 04016002. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001107
Ipsilandis, P. G. (2007). Multiobjective linear programming model for scheduling linear repetitive projects. Journal of Construction Engineering Management, 133(6), 417–424. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:6(417)
Jun, D. H., & El-Rayes, K. (2011). Multi-objective optimization of resource leveling and allocation during construction scheduling. Journal of Construction Engineering and Management, 137(12), 1080–1088. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000368
Koulinas, G. K., & Anagnostopoulos, K. P. (2012). Construction resource allocation and leveling using a threshold accepting–based hyper heuristic algorithm. Journal of Construction Engineering and Management, 138(7), 854–863. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000492
Leu, S., & Hwang, S. (2001). Optimal repetitive scheduling model with shareable Resource constraint. Journal of Construction Engineering and Management, 127(4), 270–280. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:4(270)
Long, L. D., & Ohsato, A. (2009). A genetic algorithm-based method for scheduling repetitive construction projects. Automation in Construction, 18(4), 499–511. https://doi.org/10.1016/j.autcon.2008.11.005
Saad, D. A., Masoud, M., & Osman, H. (2021). Multi-objective optimization of lean-based repetitive scheduling using batch and pull production. Automation in Construction, 127, Article 103696. https://doi.org/10.1016/j.autcon.2021.103696
Senouci, A. B., & Eldin, N. N. (2004). Use of genetic algorithms in resource scheduling of construction projects. Journal of Construction Engineering and Management, 130(6), 869–877. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(869)
SolveXL. (2018). SolveXL user manual. Exeter Advanced Analytics LLP.
Tang, Y. J., Liu, R. K., & Sun, Q. X. (2014). Two-stage scheduling model for resource-leveling of linear projects. Journal of Construction Engineering and Management, 140(7), Article 04014022. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000862
Tang, Y., Sun, Q., Liu, R., & Wang, F. (2018). Resource leveling based on line of balance and constraint programming. Computer-Aided Civil and Infrastructure Engineering, 33(10), 864–884. https://doi.org/10.1111/mice.12383
Tokdemir, O. B., Arditi, D. & Balcik, C. (2006). ALISS: advanced linear scheduling system. Construction Management and Economics, 24(12), 1253–1267. https://doi.org/10.1080/01446190600953706
Wang, Z., Hu, Z., & Tang, Y. (2020). Float-based resource leveling optimization of linear projects. IEEE Access, 8, 176997–177020. https://doi.org/10.1109/ACCESS.2020.3027058