A BIM-based identification and classification method of environmental risks in the design of Beijing subway
Abstract
The subway project safety risk management in China covers design and construction stages. The traditional method for identifying construction safety risks at the design stage requires that engineers work backward, and it relies on engineers having an accurate understanding of complex engineering information, spatial relationships, and rich experience. This paper proposes a Building Information Modeling (BIM) based automatic identification and classification framework for environmental risks at the subway design stage. First, a database of discriminant rules was established in order to achieve the digital expression of the discriminant standards for environmental risks. Second, environmental models and discriminant models were created in order to analyze spatial collisions. Then, the risk discrimination algorithm was embedded in the BIM platform. The program automatically analyzed the collision result-based discrimination rule database and output a list of environmental risks associated with the model. Finally, a shield tunnel was used for practice. As a result, the BIM-based method for automatically identifying environmental risks could improve the efficiency of the special design of safety risks and promote the digital transmission of risk design information throughout the construction process. The method described in this paper provides a reference for the safety risk management technology system in China’s subway projects. This method can also be applied to projects such as underground pipe gallery, power tunnel, and foundation pit, after optimizing the classification rules.
Keyword : BIM, environmental risk, risk grade, rule base, discriminant algorithm, subway project, BIM platform
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Beijing Municipal Commission of Housing and Urban-Rural Development. (2014). Code for safety risk assessment of urban rail transit engineering design. http://ghzrzyw.beijing.gov.cn/biaozhunguanli/bz/szjgdjt/202002/P020200220556004092533.pdf
Becerik-Gerber, B., Jazizadeh, F., Li, N., & Calis, G. (2012). Application areas and data requirements for BIM-enabled facilities management. Journal of Construction Engineering and Management, 138(3), 431–442. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000433
Chen, L. J., & Luo, H. (2014). A BIM-based construction quality management model and its applications. Automation in Construction, 46, 64–73. https://doi.org/10.1016/j.autcon.2014.05.009
Chinese Academy of Engineering. (2018, December 07). Engineering fronts 2018. http://www.cae.cn/cae/html/main/col1/2018-12/07/20181207171831177603659_1.html
Ding, L., & Zhou, C. (2013). Development of web-based system for safety risk early warning in urban metro construction. Automation in Construction, 34, 45–55. https://doi.org/10.1016/j.autcon.2012.11.001
Ding, L. Y., Yu, H. L., Li, H., Zhou, C., Wu, X. G., & Yu, M. H. (2012). Safety risk identification system for metro construction on the basis of construction drawings. Automation in Construction, 27, 120–137. https://doi.org/10.1016/j.autcon.2012.05.010
Ding, L. Y., Zhou, C., Deng, Q. X., Luo, H. B., Ye, X. W., & Ni, Y. Q. (2013). Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things. Automation in Construction, 36, 25–37. https://doi.org/10.1016/j.autcon.2013.08.017
Dong, S., Li, H., & Yin, Q. (2018). Building information modeling in combination with real time location systems and sensors for safety performance enhancement. Safety Science, 102, 226–237. https://doi.org/10.1016/j.ssci.2017.10.011
Dossick, C. S., & Neff, G. (2011). Messy talk and clean technology: communication, problem-solving and collaboration using Building Information Modelling. Engineering Project Organization Journal, 1(2), 83–93. https://doi.org/10.1080/21573727.2011.569929
Fernández-Rodríguez, S., Cortés-Pérez, J. P., Muriel, P. P., Tormo-Molina, R., & Maya-Manzano, J. M. (2018). Environmental impact assessment of pinaceae airborne pollen and green infrastructure using BIM. Automation in Construction, 96, 494–507. https://doi.org/10.1016/j.autcon.2018.10.011
Hossain, M. A., Abbott, E. L. S., Chua, D. K. H., Qui, N. T., & Goh, Y. M. (2018). Design-for-safety knowledge library for BIMintegrated safety risk reviews. Automation in Construction, 94, 290–302. https://doi.org/10.1016/j.autcon.2018.07.010
Isaac, S., Curreli, M., & Stoliar, Y. (2017). Work packaging with BIM. Automation in Construction, 83, 121–133. https://doi.org/10.1016/j.autcon.2017.08.030
Jin, H., Liu, Y. Q., & Zhong, Q. R. (2008). Current status and prospects of metro safety risk management in China. Journal Geotechnical Investigation & Surveying, 2, 216–220.
Jin, H., Huang, F. L., & Liu, Y. Q. (2011). The geological environments safe problem of metro construction. Construction Technology, 40(10), 27–29.
Jin, R., Hancock, C. M., & Tang, L. (2017). BIM investment, returns, and risks in China’s AEC industries. Journal of Construction Engineering and Management, 143(12), 04017089. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001408
Kim, K., Cho, Y., & Kim, K. (2018). BIM-driven automated decision support system for safety planning of temporary structures. Journal of Construction Engineering and Management, 144(8), 04018072. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001519
Li, M., Yu, H., Jin, H., & Liu, P. (2018a). Methodologies of safety risk control for China’s metro construction based on BIM. Safety Science, 110 (Part A), 418–426. https://doi.org/10.1016/j.ssci.2018.03.026
Li, M., Yu, H., & Liu, P. (2018b). An automated safety risk recognition mechanism for underground construction at the preconstruction stage based on BIM. Automation in Construction, 91, 284–292. https://doi.org/10.1016/j.autcon.2018.03.013
Lu, Y., Gong, P., Tang, Y., Sun, S., & Li, Q. (2021). BIM-integrated construction safety risk assessment at the design stage of building projects. Automation in Construction, 124, 103553. https://doi.org/10.1016/j.autcon.2021.103553
Luo, F. R. (2009). Study on innovation of safety management of Beijing subway construction. Urban Rapid Rail Transit, 22(2), 9–12.
Luo, H., & Gong, P. (2015). A BIM-based code compliance checking process of deep foundation construction plans. Journal of Intelligent & Robotic Systems, 79, 549–576. https://doi.org/10.1007/s10846-014-0120-z
Luo, J.-J., Zhang, D.-L., Wang, M.-S., & Zhang, C.-P. (2007). Security risk management of neighboring buildings during metro construction. Rock and Soil Mechanics, 7, 196–201.
Ma, Z. L., & Mao, N. (2015). An algorithm for automatic generation of construction quality inspection points based on BIM. Journal of Tongji University (Natural Science), 44(5), 725–729.
Malekitabar, H., Ardeshir, A., Sebt, M. H., & Stouffs, R. (2016). Construction safety risk drivers: A BIM approach. Safety Science, 82, 445–455. https://doi.org/10.1016/j.ssci.2015.11.002
Park, J., Cai, H., Dunston, P. S., & Ghasemkhani, H. (2017). Database-supported and web-based visualization for daily 4D BIM. Journal of Construction Engineering and Management, 143(10), 04017078. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001392
Rahimian, F. P., Seyedzadeh, S., Oliver, S., Rodriguez, S., & Dawood, N. (2019). On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Automation in Construction, 110, 103012. https://doi.org/10.1016/j.autcon.2019.103012
Qu, H. H. (2017). Application of BIM in safety management. Construction Technology, 46(S1), 533–536.
Sacks, R., Koskela, L., Dave, B. A., & Owen, R. (2010). Interaction of lean and building information modeling in construction. Journal of Construction Engineering and Management, 136(9), 968–980. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000203
Santos, R., Costa, A. A., Silvestre, J. D., & Pyl, L. (2019). Informetric analysis and review of literature on the role of BIM in sustainable construction. Automation in Construction, 103, 221–234. https://doi.org/10.1016/j.autcon.2019.02.022
Sloot, R. N. F., Heutink, A., & Voordijk, J. T. (2019). Assessing usefulness of 4D BIM tools in risk mitigation strategies. Automation in Construction, 106, 102881. https://doi.org/10.1016/j.autcon.2019.102881
Shim, C. S., Lee, K. M., Kang, L. S., Hwang, J., & Kim, Y. (2012). Three-dimensional information model-based bridge engineering in Korea. Structural Engineering International, 22(1), 8–13. https://doi.org/10.2749/101686612x13216060212834
Shen, Y.-s., Wang, P., Li, M.-p., & Mei, Q.-w. (2019). Application of subway foundation pit engineering risk assessment: a case study of Qingdao rock area, China. KSCE Journal of Civil Engineering, 23(11), 4621–4630. https://doi.org/10.1007/s12205-019-1854-8
Song, Z., Shi, G., Wang, J., Wei, H., Wang, T., & Zhou, G. (2019). Research on management and application of tunnel engineering based on BIM technology. Journal of Civil Engineering and Management, 25(8), 785–797. https://doi.org/10.3846/jcem.2019.11056
Tam, C. M., Zeng, S. X., & Deng, Z. M. (2004). Identifying elements of poor construction safety management in China. Safety Science, 42, 569–586. https://doi.org/10.1016/j.autcon.2014.04.012
Wang, J., Wang, P. F., & Tan, Y. H. (2009). Study on risk management of subway tunnel engineering during construction process. Chinese Journal of Underground Space and Engineering, 5(2), 385–389.
Wang, H., Pan, Y., & Luo, X. (2019a). Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Automation in Construction, 103, 41–52. https://doi.org/10.1016/j.autcon.2019.03.005
Wang, M., Deng, Y., Won, J., & Cheng, J. C. P. (2019b). An integrated underground utility management and decision support based on BIM and GIS. Automation in Construction, 107, 102931. https://doi.org/10.1016/j.autcon.2019.102931
Wu, X. G., Chen, X. Y., & Ding, L. Y., (2011). Safety risk rank evaluation of adjacent buildings during metro tunneling construction. Construction Technology, 40, 78–80.
Wu, F. B., Jin, H., & Xu, Y. D. (2012). The risk classification criteria of underground works in metro. Construction Technology, 41, 62–74.
Yang, S. l., Wang, M. S., & Zhang, C. P. (2004). Study and implementation of the third party monitoring in construction safety of urban subway. China Safety Science Journal, 14(10), 73–76.
Tang, Y., Xia, N., & Lu, Y. (2021). BIM-based safety design for emergency evacuation of metro stations. Automation in Construction, 123, 103511. https://doi.org/10.1016/j.autcon.2020.103511
Yu, Q. Z., Ding, L. Y., & Zhou, C. (2014). Analysis of factors influencing safety management for metro construction in China. Accident Analysis & Prevention, 68, 131–138. https://doi.org/10.1016/j.aap.2013.07.016
Yu, Q., Li, K., & Luo, H. B. (2016). A BIM-based dynamic model for site material supply. Procedia Engineering, 164, 526–533. https://doi.org/10.1016/j.proeng.2016.11.654
Zhang, Y., Huang, H. W., & Hu, Q. F. (2012). Introduction of code for risk management of underground words in metro GB50652—2011. Construction Technology, 41(1), 99–106.
Zhang, L., Wu, X., Ding, L., Skibniewski, M. J., & Lu, Y. (2016). BIM-based risk identification system in tunnel construction. Journal of Civil Engineering and Management, 22(4), 529–539. https://doi.org/10.3846/13923730.2015.1023348
Zhou, Y., & Ding, L. Y. (2004). Study of Wuhan rail transit project controlling support system. Journal of Civil Engineering and Management, 21(2), 16–18 (in Chinese).
Zhou, Y., Ding, L. Y, & Chen, L. J. (2013). Application of 4D visualization technology for safety management in metro construction. Automation in Construction, 34(13), 25–36. https://doi.org/10.1016/j.autcon.2012.10.011
Zhou, Y., Su, W. J., Ding, L., Luo, H., & Love, P. E. D. (2017). Predicting safety risks in deep foundation pits in subway infrastructure projects: support vector machine approach. Journal of Computing in Civil Engineering, 31(5), 04017052. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000700
Zhou, Y., Li, S., Zhou, C., & Luo, H. (2019). Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. Journal of Computing in Civil Engineering, 33(1), 05018004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000796
Zou, P. X. W., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25, 601–614. https://doi.org/10.1016/j.ijproman.2007.03.001
Zou, Y., Kiviniemi, A., & Jones, S. W. (2017). A review of risk management through BIM and BIM-related technologies. Safety Science, 97, 88–98. https://doi.org/10.1016/j.ssci.2015.12.027