Detecting bubbles in world aluminum prices: Evidence from GSADF test
Abstract
The aim of this research is to assess the existence of multiple bubbles in the global aluminum market by employing the Generalized Supremum Augmented Dickey-Fuller (GSADF) methodology. This method offers practical time series analysis tools for identifying periods of rapid price escalation, followed by subsequent collapses. Findings indicate the identification of six explosive bubbles occurring between January 1980 and March 2023, during which the aluminum price strayed from its underlying fundamental value. Additionally, this finding is consistent with the asset pricing model, which generally considers both fundamental and bubble components. Based on the empirical results, the aluminum price bubbles are positively influenced by the copper price, GDP, the U. S dollar index, industrialization of China, China’s urbanization rate, whereas the global aluminum production, oil price, and base metal price index have a negative explanatory effect on the aluminum price bubbles. To effectively stabilize the international aluminum price, policymakers are suggested to be vigilant in identifying bubble episodes and monitoring their progression. Additionally, regulatory authorities should implement measures to curb excessive speculative activity during periods of extreme market volatility, thereby mitigating excessive price fluctuations and the formation of aluminum bubbles.
Keyword : aluminum price, generalized sup ADF test, multiple bubbles, macroeconomic factors, supply security, probit regression, determinants
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Arango, L. E., Arias, F., & Flórez, A. (2012). Determinants of commodity prices. Applied Economics, 44(2), 135–145. https://doi.org/10.1080/00036846.2010.500273
Ashkenazi, D. (2019). How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change, 143, 101–113. https://doi.org/10.1016/j.techfore.2019.03.011
Baffes, J., & Savescu, C. (2014). Monetary conditions and metal prices. Applied Economics Letters, 21(7), 447–452. https://doi.org/10.1080/13504851.2013.864029
Bartoš, V., Vochozka, M., & Šanderová, V. (2022). Copper and aluminium as economically imperfect substitutes, production and price development. Acta Montanistica Slovaca, 27, 462–478. https://doi.org/10.46544/AMS.v27i2.14
Bastourre, D., Carrera, J., Ibarlucia, J., & Sardi, M. (2012). Common drivers in emerging market spreads and commodity prices (Working Paper No. 2012/57). Banco Central de la República Argentina (BCRA), Investigaciones Económicas (ie), Buenos Aires. http://hdl.handle.net/10419/126243
Batten, J. A., Ciner, C., & Lucey, B. M. (2010). The macroeconomic determinants of volatility in precious metals markets. Resources Policy, 35(2), 65–71. https://doi.org/10.1016/j.resourpol.2009.12.002
Bosch, D., & Pradkhan, E. (2015). The impact of speculation on precious metals futures markets. Resources Policy, 44, 118–134. https://doi.org/10.1016/j.resourpol.2015.02.006
Boschi, M., & Pieroni, L. (2009). Aluminium market and the macroeconomy. Journal of Policy Modeling, 31(2), 189–207. https://doi.org/10.1016/j.jpolmod.2008.11.001
Brooks, C., Prokopczuk, M., & Wu, Y. (2015). Booms and busts in commodity markets: Bubbles or fundamentals? The Journal of Futures Markets, 35(10), 916–938. https://doi.org/10.1002/fut.21721
Brunnermeier, M. K. (2016). Bubbles. In G. Jones (Ed.), Banking crises: Perspectives from the new Palgrave dictionary of economics (pp. 28–36). Palgrave Macmillan. https://doi.org/10.1057/9781137553799_5
Campbell, J. Y., & Perron, P. (1991). Pitfalls and opportunities: What macroeconomists should know about unit roots. NBER Macroeconomics Annual, 6, 141–201. https://doi.org/10.1086/654163
Caspi, I., Katzke, N., & Gupta, R. (2018). Date stamping historical periods of oil price explosivity: 1876–2014. Energy Economics, 70, 582–587. https://doi.org/10.1016/j.eneco.2015.03.029
Chen, W.-Q., & Graedel, T. E. (2012). Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009. Ecological Economics, 81, 92–102. https://doi.org/10.1016/j.ecolecon.2012.06.008
Chen, J., Zhu, X., & Zhong, M. (2019). Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis. Resources Policy, 61, 489–500. https://doi.org/10.1016/j.resourpol.2018.04.015
Choi, H. W., Heo, E., & Kim, K. (2020). SVAR analysis of factors affecting fluctuations of six major nonferrous metal prices. Journal of the Korean Society of Mineral and Energy Resources Engineers, 57(4), 352–361. https://doi.org/10.32390/ksmer.2020.57.4.352
Cifarelli, G., & Paladino, G. (2010). Oil price dynamics and speculation. Energy Economics, 32(2), 363–372. https://doi.org/10.1016/j.eneco.2009.08.014
Dogan, E., Majeed, M. T., & Luni, T. (2022). Analyzing the nexus of COVID-19 and natural resources and commodities: Evidence from time-varying causality. Resources Policy, 77, Article 102694. https://doi.org/10.1016/j.resourpol.2022.102694
Dutta, A. (2018). Impacts of oil volatility shocks on metal markets: A research note. Resources Policy, 55, 9–19. https://doi.org/10.1016/j.resourpol.2017.09.003
Escobari, D., Garcia, S., & Mellado, C. (2017). Identifying bubbles in Latin American equity markets: Phillips-Perron-based tests and linkages. Emerging Markets Review, 33, 90–101. https://doi.org/10.1016/j.ememar.2017.09.001
Figuerola-Ferretti, I., & McCrorie, J. R. (2016). The shine of precious metals around the global financial crisis. Journal of Empirical Finance, 38, 717–738. https://doi.org/10.1016/j.jempfin.2016.02.013
Floros, C., & Galyfianakis, G. (2020). Bubbles in crude oil and commodity energy index: New evidence. Energies, 13(24), Article 6648. https://doi.org/10.3390/en13246648
Galán-Gutiérrez, J. A., & Martín-García, R. (2022). Fundamentals vs. financialization during extreme events: From backwardation to contango, a copper market analysis during the COVID-19 pandemic. Mathematics, 10(4), Article 559. https://doi.org/10.3390/math10040559
Gürkaynak, R. S. (2008). Econometric tests of asset price bubbles: Taking stock*. Journal of Economic Surveys, 22(1), 166–186. https://doi.org/10.1111/j.1467-6419.2007.00530.x
Henckens, M. L. C. M., & Worrell, E. (2020). Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. Journal of Cleaner Production, 264, Article 121460. https://doi.org/10.1016/j.jclepro.2020.121460
Homm, U., & Breitung, J. (2012). Testing for speculative bubbles in stock markets: A comparison of alternative methods. Journal of Financial Econometrics, 10(1), 198–231. https://doi.org/10.1093/jjfinec/nbr009
International Monetary Fund. (n.d.). IMF data. https://www.imf.org/en/Data
Jiang, W., & Chen, Y. (2022). The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods. Energy, 246, Article 123320. https://doi.org/10.1016/j.energy.2022.123320
Khan, K., Su, C.-W., & Rehman, A. U. (2021a). Do multiple bubbles exist in coal price? Resources Policy, 73, Article 102232. https://doi.org/10.1016/j.resourpol.2021.102232
Khan, K., Su, C., Umar, M., & Yue, X. (2021b). Do crude oil price bubbles occur? Resources Policy, 71, Article 101936. https://doi.org/10.1016/j.resourpol.2020.101936
Labys, W. C., Achouch, A., & Terraza, M. (1999). Metal prices and the business cycle. Resources Policy, 25(4), 229–238. https://doi.org/10.1016/S0301-4207(99)00030-6
Li, S., Wang, Z., Yue, Q., & Zhang, T. (2022). Analysis of the quantity and spatial characterization of aluminum in-use stocks in China. Resources Policy, 79, Article 102979. https://doi.org/10.1016/j.resourpol.2022.102979
Liao, J., Qian, Q., & Xu, X. (2018). Whether the fluctuation of China’s financial markets have impact on global commodity prices? Physica A: Statistical Mechanics and its Applications, 503, 1030–1040. https://doi.org/10.1016/j.physa.2018.08.035
Liaqat, A., Nazir, M. S., & Ahmad, I. (2019). Identification of multiple stock bubbles in an emerging market: Application of GSADF approach. Economic Change and Restructuring, 52(3), 301–326. https://doi.org/10.1007/s10644-018-9230-0
Liaqat, A., Nazir, M. S., Ahmad, I., Mirza, H. H., & Anwar, F. (2020). Do stock price bubbles correlate between China and Pakistan? An inquiry of pre- and post-Chinese investment in Pakistani capital market under China-Pakistan Economic Corridor regime. International Journal of Finance & Economics, 25(3), 323–335. https://doi.org/10.1002/ijfe.1754
Liu, Y., Yang, C., Huang, K., & Gui, W. (2020). Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network. Knowledge-Based Systems, 188, Article 105006. https://doi.org/10.1016/j.knosys.2019.105006
Lombardi, M. J., Osbat, C., & Schnatz, B. (2012). Global commodity cycles and linkages: A FAVAR approach. Empirical Economics, 43(2), 651–670. https://doi.org/10.1007/s00181-011-0494-8
Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica, 46(6), 1429–1445. https://doi.org/10.2307/1913837
Manberger, A., & Stenqvist, B. (2018). Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy, 119, 226–241. https://doi.org/10.1016/j.enpol.2018.04.056
Mayer, H., Rathgeber, A., & Wanner, M. (2017). Financialization of metal markets: Does futures trading influence spot prices and volatility? Resources Policy, 53, 300–316. https://doi.org/10.1016/j.resourpol.2017.06.011
National Bureau of Statistics. (n.d.) National Annual Statistical Bulletin. https://www.stats.gov.cn/sj/tjgb/ndtjgb/
Ozgur, O., Yilanci, V., & Ozbugday, F. (2021). Detecting speculative bubbles in metal prices: Evidence from GSADF test and machine learning approaches. Resources Policy, 74, Article 102306. https://doi.org/10.1016/j.resourpol.2021.102306
Pavlidis, E., Martínez-Garcia, E., & Grossman, V. (2019). Detecting periods of exuberance: A look at the role of aggregation with an application to house prices. Economic Modelling, 80, 87–102. https://doi.org/10.1016/j.econmod.2018.07.021
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
Phillips, P. C. B., Shi, S., & Yu, J. (2015). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 1043–1078. https://doi.org/10.1111/iere.12132
Pierdzioch, C., Risse, M., & Rohloff, S. (2016). Are precious metals a hedge against exchange-rate movements? An empirical exploration using bayesian additive regression trees. The North American Journal of Economics and Finance, 38, 27–38. https://doi.org/10.1016/j.najef.2016.06.002
Pincheira, P., & Hardy, N. (2021). Forecasting aluminum prices with commodity currencies. Resources Policy, 73, Article 102066. https://doi.org/10.1016/j.resourpol.2021.102066
Potrykus, M. (2023). Price bubbles in commodity market – A single time series and panel data analysis. Quarterly Review of Economics and Finance, 87, 110–117. https://doi.org/10.1016/j.qref.2022.12.002
Reboredo, J. C., & Ugolini, A. (2016). The impact of downward/upward oil price movements on metal prices. Resources Policy, 49, 129–141. https://doi.org/10.1016/j.resourpol.2016.05.006
Sánchez Lasheras, F., de Cos Juez, F. J., Suárez Sánchez, A., Krzemień, A., & Riesgo Fernández, P. (2015). Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resources Policy, 45, 37–43. https://doi.org/10.1016/j.resourpol.2015.03.004
Sharma, S., & Escobari, D. (2018). Identifying price bubble periods in the energy sector. Energy Economics, 69, 418–429. https://doi.org/10.1016/j.eneco.2017.12.007
Shi, W., Wang, G., Zhao, X., Feng, X., & Wu, J. (2018). Price determination in the electrolytic aluminum industry: The role of electricity prices. Resources Policy, 59, 274–281. https://doi.org/10.1016/j.resourpol.2018.07.014
Stiglitz, J. E. (1990). Symposium on bubbles. Journal of Economic Perspectives, 4(2), 13–18. https://doi.org/10.1257/jep.4.2.13
Su, C.-W., Wang, X.-Q., Zhu, H., Tao, R., Moldovan, N.-C., & Lobonţ, O.-R. (2020). Testing for multiple bubbles in the copper price: Periodically collapsing behavior. Resources Policy, 65, Article 101587. https://doi.org/10.1016/j.resourpol.2020.101587
Su, C.-W., Li, Z.-Z., Chang, H.-L., & Lobonţ, O.-R. (2017). When will occur the crude oil bubbles? Energy Policy, 102, 1–6. https://doi.org/10.1016/j.enpol.2016.12.006
Sun, Z., Sun, B., & Lin, S. X. (2013). The impact of monetary liquidity on Chinese aluminum prices. Resources Policy, 38(4), 512–522. https://doi.org/10.1016/j.resourpol.2013.08.002
Tirole, J. (1985). Asset bubbles and overlapping generations. Econometrica, 53(6), 1499–1528. https://doi.org/10.2307/1913232
Umar, M., Su, C.-W., Rizvi, S. K. A., & Lobonţ, O.-R. (2021). Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices. Energy, 231, Article 120873. https://doi.org/10.1016/j.energy.2021.120873
Wang, X.-Q., Wu, T., Zhong, H., & Su, C.-W. (2023a). Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play? Resources Policy, 83, Article 103707. https://doi.org/10.1016/j.resourpol.2023.103707
Wang, Y., Chen, L., Wang, X., Tang, N., & Kang, X. (2023b). Trade network characteristics, competitive patterns, and potential risk shock propagation in global aluminum ore trade. Frontiers in Energy Research, 10, 1–15. https://doi.org/10.3389/fenrg.2022.1048186
Wang, Z., & Kim, M.-K. (2022). Price bubbles in oil & gas markets and their transfer. Resources Policy, 79, Article 103059. https://doi.org/10.1016/j.resourpol.2022.103059
Wilhelm, C. (2020). Regime stability, social insecurity and bauxite mining in Guinea. Extractive Industries and Society, 7(1), 249–250. https://doi.org/10.1016/j.exis.2019.12.007
Wind Economic Database. (n.d.). https://www.wind.com.cn/portal/zh/EDB/index.html
World Bank. (n.d.). DataBank. https://data.worldbank.org.cn/
Wzorek, A., Ivashchuk, O., & Wzorek, Ł. (2017). Analysis of the factors influencing the price of aluminum on the global market. Mechanik, 90(7), 565–567. https://doi.org/10.17814/mechanik.2017.7.74
Yao, C.-Z, & Li, H.-Y. (2021). A study on the bursting point of Bitcoin based on the BSADF and LPPLS methods. North American Journal of Economics and Finance, 55, Article 101280. https://doi.org/10.1016/j.najef.2020.101280
Yi, X., Lu, Y., He, G., Li, H., Chen, C., & Cui, H. (2022). Global carbon transfer and emissions of aluminum production and consumption. Journal of Cleaner Production, 362, Article 132513. https://doi.org/10.1016/j.jclepro.2022.132513
Yu, B., Zhao, Z., Zhang, S., An, R., Chen, J., Li, R., & Zhao, G. (2021). Technological development pathway for a low-carbon primary aluminum industry in China. Technological Forecasting and Social Change, 173, Article 121052. https://doi.org/10.1016/j.techfore.2021.121052
Zheng, Y., Wang, Q., Zheng, Y., Wang, Z., & Tian, D. (2022). Electrolytic recovery of aluminum from 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid containing AlCl3. International Journal of Electrochemical Science, 17(9), Article 220968. https://doi.org/10.20964/2022.09.63
Zhou, H., & Lu, X. (2023). Investor attention on the Russia-Ukraine conflict and stock market volatility: Evidence from China. Finance Research Letters, 52, Article 103526. https://doi.org/10.1016/j.frl.2022.103526
Zhu, X., & Jin, Q. (2021). Comparison of three emerging dross recovery processes in China’s aluminum industry from the perspective of life cycle assessment. ACS Sustainable Chemistry & Engineering, 9(19), 6776–6787. https://doi.org/10.1021/acssuschemeng.1c00960