Share:


Land use land cover change mapping from Sentinel 1B & 2A imagery using random forest algorithm in Côte d’Ivoire

    Christian Jonathan Anoma Kouassi Affiliation
    ; Chen Qian Affiliation
    ; Dilawar Khan Affiliation
    ; Lutumba Suika Achille Affiliation
    ; Zhang Kebin Affiliation
    ; James Kehinde Omifolaji Affiliation
    ; Tu Ya Affiliation
    ; Xiaohui Yang Affiliation

Abstract

Monitoring crop condition, soil properties, and mapping tillage activities can be used to assess land use, forecast crops, monitor seasonal changes, and contribute to the implementation of sustainable development policy. Agricultural maps can provide independent and objective estimates of the extent of crops in a given area or growing season, which can be used to support efforts to ensure food security in vulnerable areas. Satellite data can help detect and classify different types of soil. The evolution of satellite remote sensing technologies has transformed techniques for monitoring the Earth’s surface over the last several decades. The European Space Agency (ESA) and the European Union (EU) created the Copernicus program, which resulted in the European satellites Sentinel-1B (S1B) and Sentinel-2A (S2A), which allow the collection of multi-temporal, spatial, and highly repeatable data, providing an excellent opportunity for the study of land use, land cover, and change. The goal of this study is to map the land cover of Côte d’Ivoire’s West Central Soubre area (5°47′1′′ North, 6°35′38′′ West) between 2014 and 2020. The method is based on a combination of S1B and S2A imagery data, as well as three types of predictors: the biophysical indices Normalized Difference Vegetation Index “(NDVI)”, Modified Normalized Difference Water Index “(MNDWI)”, Normalized Difference Urbanization Index “(NDBI)”, and Normalized Difference Water Index “(NDWI)”, as well as spectral bands (B1, B11, B2, B3, B4, B6, B7, B8) and polarization coefficients VV. For the period 2014–2020, six land classifications have been established: Thick_Forest, Clear_Drill, Urban, Water, Palm_Oil, Bareland, and Cacao_Land. The Random Forest (RF) algorithm with 60 numberOfTrees was the primary categorization approach used in the Google Earth Engine (GEE) platform. The results show that the RF classification performed well, with outOfBagErrorEstimates of 0.0314 and 0.0498 for 2014 and 2020, respectively. The classification accuracy values for the kappa coefficients were above 95%: 96.42% in 2014 and 95.28% in 2020, with an overall accuracy of 96.97% in 2014 and 96 % in 2020. Furthermore, the User Accuracy (UA) and Producer Accuracy (PA) values for the classes were frequently above 80%, with the exception of the Bareland class in 2020, which achieved 79.20%. The backscatter coefficients of the S1B polarization variables had higher GINI significance in 2014: VH (70.80) compared to VH (50.37) in 2020; and VV (57.11) in 2014 compared to VV (46.17) in 2020. Polarization coefficients had higher values than the other spectral and biophysical variables of the three predictor variables. During the study period, the Thick_Forest (35.90% ± 1.17), Palm_Oil (57.59% ± 1.48), and Water (5.90% ± 0.47) classes experienced a regression in area, while the Clear_Drill (16.96% ± 0.80), Urban (2.32% ± 0.29), Bareland (83.54% ± 1.79), and Cacao_Land (35.14% ± 1.16) classes experienced an increase. The approach used is regarded as excellent based on the results obtained.

Keyword : random forest, Google Earth Engine, multispectral index, ArcGgis, land-use/land-cover change, Cote d’Ivoire

How to Cite
Kouassi, C. J. A., Qian, C., Khan, D., Achille, L. S., Kebin, Z., Omifolaji, J. K., Ya, T., & Yang, X. (2024). Land use land cover change mapping from Sentinel 1B & 2A imagery using random forest algorithm in Côte d’Ivoire. Geodesy and Cartography, 50(1), 43–59. https://doi.org/10.3846/gac.2024.18724
Published in Issue
Apr 15, 2024
Abstract Views
287
PDF Downloads
213
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abu, I.-O., Szantoi, Z., Brink, A., Robuchon, M., & Thiel, M. (2021). Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas. Ecological Indicators, 129, Article 107863. https://doi.org/10.1016/j.ecolind.2021.107863

Aide, M. T., & Aide, C. (2012). Rare earth elements: Their importance in understanding soil genesis. International Scholarly Research Notices, 2012, Article 783876. https://doi.org/10.5402/2012/783876

Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529–1543. https://doi.org/10.1007/s10708-019-10037-x

Alekseev, A., & Chernikhovskii, D. (2021). Assessment of the health status of tree stands based on Sentinel-2B remote sensing materials and the short-wave vegetation index SWVI. IOP Conference Series: Earth and Environmental Science, 76(1), Article 012003. https://doi.org/10.1088/1755-1315/876/1/012003

Amit, Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural computation, 9(7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545

Amitrano, D., Martino, G. D., Iodice, A., Mitidieri, F., Papa, M. N., Riccio, D., & Ruello, G. (2014). Sentinel-1 for monitoring reservoirs: A performance analysis. Remote Sensing, 6(11), 10676–10693. https://doi.org/10.3390/rs61110676

Aredehey, G., Mezgebu, A., & Girma, A. (2018). Land-use land-cover classification analysis of Giba catchment using hyper temporal MODIS NDVI satellite images. International Journal of Remote Sensing, 39(3), 810–821. https://doi.org/10.1080/01431161.2017.1392639

Argamosa, R. J. L., Blanco, A. C., Baloloy, A. B., Candido, C. G., Dumalag, J. B. L. C., Dimapilis, L. L. C., & Paringit, E. C. (2018). Modelling above ground biomass of mangrove forest using Sentinel-1 imagery. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(3). https://doi.org/10.5194/isprs-annals-IV-3-13-2018

Assalé, A. A., Barima, Y. S., Sangne, Y. C., Bleu, D. K., & Kpangui, K. B. (2020). Évaluation des services d’approvisionnement fournis par les espaces domaniaux anthropisés: cas de la forêt classée du Haut-Sassandra (Centre-Ouest de la Côte d’Ivoire). Canadian Journal of Forest Research, 50(10), 1002–1011. https://doi.org/10.1139/cjfr-2019-0443

Assi, L. A., & Guinko, S. (1996). Confusion de deux taxons spécifiques ou subspécifiques au sein du genre Borassus en Afrique de l’Ouest. In L. J. G. van der Maesen, X. M. van der Burgt, & J. M. van Medenbach de Rooy (Eds.), The Biodiversity of African Plants (pp. 773–779). Springer. https://doi.org/10.1007/978-94-009-0285-5_98

Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5(2), 949–981. https://doi.org/10.3390/rs5020949

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182–185. https://doi.org/10.1038/nclimate1354

Barima, Y. S. S., Kouakou, A. T. M., Bamba, I., Sangne, Y. C., Godron, M., Andrieu, J., & Bogaert, J. (2016). Cocoa crops are destroying the forest reserves of the classified forest of Haut-Sassandra (Ivory Coast). Global Ecology and Conservation, 8, 85–98. https://doi.org/10.1016/j.gecco.2016.08.009

Bourgoin, C., Betbeder, J., Le Roux, R., Gond, V., Oszwald, J., Arvor, D., Baudry, J., Boussard, H., Le Clech, S., & Mazzei, L. (2021). Looking beyond forest cover: An analysis of landscape-scale predictors of forest degradation in the Brazilian Amazon. Environmental Research Letters, 16(11), Article 114045. https://doi.org/10.1088/1748-9326/ac31eb

Breiman, L., Last, M., & Rice, J. (2003). Random forests: Finding quasars. In Statistical challenges in astronomy (pp. 243–254). Springer. https://doi.org/10.1007/0-387-21529-8_16

Breiman, R. F., Cozen, W., Fields, B. S., Mastro, T. D., Carr, S. J., Spika, J. S., & Mascola, L. (1990). Role of air sampling in investigation of an outbreak of Legionnaires’ disease associated with exposure to aerosols from an evaporative condenser. Journal of Infectious Diseases, 161(6), 1257–1261. https://doi.org/10.1093/infdis/161.6.1257

Çavur, M., Duzgun, H., Kemeç, S., & Demirkan, D. (2019). Land use and land cover classification of Sentinel 2-A: St Petersburg case study. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 13–16. https://doi.org/10.5194/isprs-archives-XLII-1-W2-13-2019

Chaudhary, A., Gustafson, D., & Mathys, A. (2018). Multi-indicator sustainability assessment of global food systems. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-03308-7

Chaudhary, S., & Dhanya, C. (2018). Dependence of error components in satellite-based precipitation products on topography, LULC and climatic features [Conference presentation]. AGU Fall Meeting 2018.

Chemura, A., Mutanga, O., & Odindi, J. (2017). Empirical modeling of leaf chlorophyll content in Coffee (Coffea Arabica) plantations with Sentinel-2 MSI data: Effects of spectral settings, spatial resolution, and crop canopy cover. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5541–5550. https://doi.org/10.1109/JSTARS.2017.2750325

Chen, Z., & Zhao, S. (2022). Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 113, Article 103010. https://doi.org/10.1016/j.jag.2022.103010

Chen, Z., Zhibin, S., Huaiqing, Z., Huacong, Z., Huacong, Z., & Hanqing, Q. (2023). Aboveground forest biomass estimation using tent mapping atom search optimized backpropagation neural network with Landsat 8 and Sentinel-1A data. Remote Sensing, 15(24), Article 5653. https://doi.org/10.3390/rs15245653

Cheyns, E., Akindes, F., & Aka Adié, F. (2000). La filière palmier à huile en Côte d’Ivoire 3 ans après la privatisation: état des lieux d’un procès de recomposition institutionnelle. Oléagineux Corps gras Lipides, 7(2), 166–171. https://doi.org/10.1051/ocl.2000.0166

Choi, H., & Baraniuk, R. G. (2001). Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing, 10(9), 1309–1321. https://doi.org/10.1109/83.941855

Chrysafis, I., Mallinis, G., Siachalou, S., & Patias, P. (2017). Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters, 8(6), 508–517. https://doi.org/10.1080/2150704X.2017.1295479

Collet, C., & Calloz, R. (2001). Précis de Télédétection, Volume 3: Traitements Numériques d’Images de Télédétection. Universités francophones. Presses de l’Universite du Quebec.

Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P., & Ozdogan, M. (2014). Global land cover mapping: A review and uncertainty analysis. Remote Sensing, 6(12), 12070–12093. https://doi.org/10.3390/rs61212070

Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1

Descals, A., Szantoi, Z., Meijaard, E., Sutikno, H., Rindanata, G., & Wich, S. (2019). Oil palm (Elaeis guineensis) mapping with details: Smallholder versus industrial plantations and their extent in Riau, Sumatra. Remote Sensing, 11(21), Article 2590. https://doi.org/10.3390/rs11212590

Dhanda, P., Nandy, S., Kushwaha, S., Ghosh, S., Murthy, Y. K., & Dadhwal, V. (2017). Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Progress in Physical Geography, 41(3), 247–267. https://doi.org/10.1177/0309133317693443

Dhanya, T., & Yerramalli, C. S. (2018). Lightning strike effect on carbon fiber reinforced composites–effect of copper mesh protection. Materials Today Communications, 16, 124–134. https://doi.org/10.1016/j.mtcomm.2018.05.009

Disse, M., Fenta Mekonnen, D., Duan, Z., & Rientjes, T. (2018). Analysis of the combined and single effects of LULC and climate change on the streamflow of the Upper Blue Nile River Basin (UBNRB): Using statistical trend tests, remote sensing landcover maps and the SWAT model. In EGU General Assembly Conference Abstracts, Vienna, Austria. https://doi.org/10.5194/hess-2017-685

European Space Agency. (2019). ESA convention and council rules of procedure. European Space Agency Communications, ESTEK, Noordwijk, The Netherlands.

Eveillé, F., Schiettecatte, L.-S., & Toudert, A. (2020). Economic and climate effects of low-carbon agricultural and bioenergy practices in the rice value chain in Gagnoa, Côte d’Ivoire. Food and Agriculture Organization of the United Nations.

Falk, R., Wapner, P., & Elver, H. (2016). Climate change, policy knowledge, and the temporal imagination. In P. Wapner & H. Elver (Eds.), Reimagining climate change. Routledge. https://doi.org/10.4324/9781315671468

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Hughes, M. J. & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026

Fosgate, C. H., Krim, H., Irving, W. W., Karl, W. C., & Willsky, A. S. (1997). Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Transactions on Image Processing, 6(1), 7–20. https://doi.org/10.1109/83.552077

Gao, Q., Zribi, M., Escorihuela, M. J., & Baghdadi, N. (2017). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors, 17(9), Article 1966. https://doi.org/10.3390/s17091966

Garioud, A., Valero, S., Giordano, S., & Mallet, C. (2021). Recurrent-based regression of Sentinel time series for continuous vegetation monitoring. Remote Sensing of Environment, 263, Article 112419. https://doi.org/10.1016/j.rse.2021.112419

Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013

Ghosh, A., Fassnacht, F. E., Joshi, P. K., & Koch, B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26, 49–63. https://doi.org/10.1016/j.jag.2013.05.017

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008

Grinand, C., Rakotomalala, F., Gond, V., Vaudry, R., Bernoux, M., & Vieilledent, G. (2013). Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sensing of Environment, 139, 68–80. https://doi.org/10.1016/j.rse.2013.07.008

Gulácsi, A., & Kovács, F. (2020). Sentinel-1-imagery-based high-resolution water cover detection on wetlands, Aided by Google Earth Engine. Remote Sensing, 12(10), Article 1614. https://doi.org/10.3390/rs12101614

Haifeng, T., Jianxi, H., Xuecao, L., Jian, W., Boyan, Z., Yaochen, Q., & Li, W. (2020). Garlic and winter wheat identification based on active and passive satellite imagery and the Google Earth Engine in Northern China. Remote Sensing, 12(21), Article 3539. https://doi.org/10.3390/rs12213539

Han, H.-G., & Lee, M.-J. (2020). A method for classifying land and ocean area by removing Sentinel-1 speckle noise. Journal of Coastal Research, 102(SI), 33–38. https://doi.org/10.2112/SI102-004.1

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., & Hobart, G. W. (2018). Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year landsat time series. Canadian Journal of Remote Sensing, 44(1), 67–87. https://doi.org/10.1080/07038992.2018.1437719

Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., & Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166–176. https://doi.org/10.1016/j.rse.2017.02.021

Huang, C., Yang, Q., & Huang, W. (2021). Analysis of the spatial and temporal changes of NDVI and its driving factors in the wei and jing river basins. International Journal of Environmental Research and Public Health, 18(22), Article 11863. https://doi.org/10.3390/ijerph182211863.

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), Article 166. https://doi.org/10.3390/rs8030166

Jiaxin, L., Ling, H., Lei, L., Junfeng, W., Zhaode, X., Dingjian, J., & Xinlin, Z. (2023). Lithology classification in semi-arid area combining multi-source remote sensing images using support vector machine optimized by improved particle swarm algorithm. International Journal of Applied Earth Observation and Geoinformation, 119, Article 103318. https://doi.org/10.1016/j.jag.2023.103318

Jović, A., Brkić, K., & Bogunović, N. (2012). Decision tree ensembles in biomedical time-series classification. In A. Pinz, T. Pock, H. Bischof, & F. Leberl (Eds.), Lecture notes in computer science: Vol. 7476. Pattern Recognition. DAGM/OAGM 2012 (pp. 408–417). Springer. https://doi.org/10.1007/978-3-642-32717-9_41

Kaplan, G., & Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137–143. https://doi.org/10.1080/22797254.2017.1297540

Khan, A., Govil, H., Kumar, G., & Dave, R. (2020). Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: A case study for Yamuna River floodplain, India. Spatial Information Research, 28(6), 669–681. https://doi.org/10.1007/s41324-020-00325-x

Khellouk, R., Barakat, A., El Jazouli, A., Lionboui, H., & Benabdelouahab, T. (2021). Assessment of Water Cloud Model based on SAR and optical satellite data for surface soil moisture retrievals over agricultural area. Eurasian Journal of Soil Science, 10(3), 243–250. https://doi.org/10.18393/ejss.926813

Klopper, H. C., Coetzee, S. K., Pretorius, R., & Bester, P. (2012). Practice environment, job satisfaction and burnout of critical care nurses in South Africa. Journal of Nursing Management, 20(5), 685–695. https://doi.org/10.1111/j.1365-2834.2011.01350.x

Kolyaie, S., Treier, U. A., Watmough, G. R., Madsen, B., Bøcher, P. K., Psomas, A., Bösch, R., & Normand, S. (2019). Transferability and the effect of colour calibration during multi-image classification of Arctic vegetation change. Polar Biology, 42(7), 1227–1239. https://doi.org/10.1007/s00300-019-02491-7

Kopecká, M., Szatmári, D., & Rosina, K. (2017). Analysis of urban green spaces based on Sentinel-2A: Case studies from Slovakia. Land, 6(2), Article 25. https://doi.org/10.3390/land6020025

Kouakou, P.-A. (2021). Estimation des effets macroeconomiques de la volatilite des cours internationaux du cacao a l’aide du modele VAR/VECM: selon le cas de la Cote d’Ivoire. In InterConf (pp. 29–53). https://doi.org/10.51582/interconf.7-8.11.2021.003

Kouakou, J.-L., Gonedelé Bi, S., Bitty, E. A., Kouakou, C., Yao, A. K., Kassé, K. B., & Ouattara, S. (2020). Ivory Coast without ivory: Massive extinction of African forest elephants in Côte d’Ivoire. PloS ONE, 15(10), Article e0232993. https://doi.org/10.1371/journal.pone.0232993

Kouassi, C. J. A., Khan, D., Achille, L. S., Omifolaji, J. K., & Kebin, Z. (2021a). Forest resources depletion: An ecological model for biodiversity preservation and conservation in Cote D’Ivoire. Open Journal of Ecology, 11, 870–890. https://doi.org/10.4236/oje.2021.1112052.

Kouassi, C. J. A., Khan, D., Achille, L. S., Omifolaji, J. K., Espoire, M. M. R. B., Zhang, K. B., Yang, X. H., & Horning, N. (2021b). Conflict-induced deforestation detection in African Côte D’ivoire using landsat images and random forest algorithm: A case in Mount Peko National Park. Applied Ecology and Environmental Research, 20(3), 2035–2058. https://doi.org/10.15666/aeer/2003_20352058

Kouassi, J.-L., Gyau, A., Diby, L., Bene, Y., & Kouamé, C. (2021c). Assessing land use and land cover change and farmers’ perceptions of deforestation and land degradation in South-West Côte d’Ivoire, West Africa. Land, 10(4), Article 429. https://doi.org/10.3390/land10040429

Laurin, G. V., Puletti, N., Hawthorne, W., Liesenberg, V., Corona, P., Papale, D., Chen, Q., & Valentini, R. (2016). Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 176, 163–176. https://doi.org/10.1016/j.rse.2016.01.017

Lavy, V., & Sand, E. (2019). The effect of social networks on students’ academic and non-cognitive behavioural outcomes: Evidence from conditional random assignment of friends in school. The Economic Journal, 129(617), 439–480. https://doi.org/10.1111/ecoj.12582

Lefebvre, A., Sannier, C., & Corpetti, T. (2016). Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sensing, 8(7), Article 606. https://doi.org/10.3390/rs8070606

Li, G., Rabe, K. S., Nielsen, J., & Engqvist, M. K. (2019). Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synthetic Biology, 8(6), 1411–1420. https://doi.org/10.1021/acssynbio.9b00099

Li, W., Dong, R., Fu, H., Wang, J., Yu, L., & Gong, P. (2020). Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 237, Article 111563. https://doi.org/10.1016/j.rse.2019.111563

Mansaray, L. R., Yang, L., Kabba, V. T., Kanu, A. S., Huang, J., & Wang, F. (2019). Optimising rice mapping in cloud-prone environments by combining quad-source optical with Sentinel-1A microwave satellite imagery. GIScience & Remote Sensing, 56(8), 1333–1354. https://doi.org/10.1080/15481603.2019.1646978

Mansaray, L. R., Zhang, K., & Kanu, A. S. (2020). Dry biomass estimation of paddy rice with Sentinel-1A satellite data using machine learning regression algorithms. Computers and Electronics in Agriculture, 176, Article 105674. https://doi.org/10.1016/j.compag.2020.105674

Mas, J. (2000). Une revue des méthodes et des techniques de télédétection du changement. Canadian Journal of Remote Sensing, 26(4), 349–362. https://doi.org/10.1080/07038992.2000.10874785

Mengqi, Z., Bao, S., Linsheng, H., Dongyan, Z., Haifeng, X., & Xiaoying, Y. (2022). Identification of soybean based on Sentinel-1/2 SAR and MSI imagery under a complex planting structure. Ecological Informatics, 72, Article 101825. https://doi.org/10.1016/j.ecoinf.2022.101825

Méger, N., Rigotti, C., Pothier, C., Nguyen, T., Lodge, F., Gueguen, L., Andreoli, R., Doin, M.-R., & Datcu, M. (2019). Ranking evolution maps for Satellite Image Time Series exploration: Application to crustal deformation and environmental monitoring. Data Mining and Knowledge Discovery, 33(1), 131–167. https://doi.org/10.1007/s10618-018-0591-9

Mohammadi, A., & Khodabandehlou, B. (2020). Classification and assessment of land use changes in Zanjan city using object-oriented analysis and Google Earth engine system. Geography and Environmental Planning, 31(2), 25–42.

Mostafa, Y., Ali, M. N. O., Mostafa, F., & Yousef, M. (2022). An approach for building rooftop border extraction from very high-resolution satellite images. Geocarto International, 37(15), 4557–4570. https://doi.org/10.1080/10106049.2021.1892207

Murray, N. J., Keith, D. A., Simpson, D., Wilshire, J. H., & Lucas, R. M. (2018). Remap: An online remote sensing application for land cover classification and monitoring. Methods in Ecology and Evolution, 9(9), 2019–2027. https://doi.org/10.1111/2041-210X.13043

N’Guessan, A. E., N’dja, J. K., Yao, O. N., Amani, B. H., Gouli, R. G., Piponiot, C., Zo-Bi, I. C., & Hérault, B. (2019). Drivers of biomass recovery in a secondary forested landscape of West Africa. Forest Ecology and Management, 433, 325–331. https://doi.org/10.1016/j.foreco.2018.11.021

Nonni, F., Malacarne, D., Pappalardo, S. E., Codato, D., Meggio, F., & De Marchi, M. (2018). Sentinel-2 Data analysis and comparison with UAV multispectral images for precision viticulture. GI_Forum, 6(1), 105–116. https://doi.org/10.1553/giscience2018_01_s105

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

Ongolo, S., Kouamé Kouassi, S., Chérif, S., & Giessen, L. (2018). The tragedy of forestland sustainability in postcolonial Africa: Land development, cocoa, and politics in Côte d’Ivoire. Sustainability, 10(12), Article 4611. https://doi.org/10.3390/su10124611

Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402. https://doi.org/10.1023/A:1020908432489

Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping agricultural landuse patterns from time series of Landsat 8 using random forest based hierarchial approach. Remote Sensing, 11(5), Article 601. https://doi.org/10.3390/rs11050601

Pattanayak, S. P., & Diwakar, S. K. (2018). Seasonal comparative study of NDVI, NDBI and NDWI of Hyderabad City (Telangana) based on LISS-III image using remote sensing and DIP. Khoj: An International Peer Reviewed Journal of Geography, 5(1), 78–86. https://doi.org/10.5958/2455-6963.2018.00006.1

Pazúr, R., Feranec, J., Štych, P., Kopecká, M., & Holman, L. (2017). Changes of urbanised landscape identified and assessed by the Urban Atlas data: Case study of Prague and Bratislava. Land Use Policy, 61, 135–146. https://doi.org/10.1016/j.landusepol.2016.11.022

Perez, D., Lu, Y., Kwan, C., Shen, Y., Koperski, K., & Li, J. (2018). Combining satellite images with feature indices for improved change detection. In 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). https://doi.org/10.1109/UEMCON.2018.8796538

Periyasamy, R., Roy, P. D., Chokkalingam, L., Natarajan, L., Sun­dar, S., Moorthy, P., & Gowrappan, M. (2021). Transformation analysis on landuse/land cover changes for two decades between 1999 and 2019 CE with reference to aquaculture – Nagapattinam Coast, Southeast India. Journal of the Indian Society of Remote Sensing, 49(11), 2831–2845. https://doi.org/10.1007/s12524-021-01432-4

Pesaresi, M., Corbane, C., Julea, A., Florczyk, A. J., Syrris, V., & Soille, P. (2016). Assessment of the added-value of Sentinel-2 for detecting built-up areas. Remote Sensing, 8(4), Article 299. https://doi.org/10.3390/rs8040299

Pfeifer, M., Disney, M., Quaife, T., & Marchant, R. (2012). Terrestrial ecosystems from space: A review of earth observation products for macroecology applications. Global Ecology and Biogeography, 21(6), 603–624. https://doi.org/10.1111/j.1466-8238.2011.00712.x

Plank, S., Marchese, F., Filizzola, C., Pergola, N., Neri, M., Nolde, M., & Martinis, S. (2019). The July/August 2019 lava flows at the Sciara del Fuoco, Stromboli – Analysis from multi-sensor infrared satellite imagery. Remote Sensing, 11(23), Article 2879. https://doi.org/10.3390/rs11232879

Qu, L., Chen, Z., Li, M., Zhi, J., & Wang, H. (2021). Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google Earth engine. Remote Sensing, 13(3), Article 453. https://doi.org/10.3390/rs13030453

Radoux, J., Chomé, G., Jacques, D. C., Waldner, F., Bellemans, N., Matton, N., Lamarche, C., D’Andrimont, R., & Defourny, P. (2016). Sentinel-2’s potential for sub-pixel landscape feature detection. Remote Sensing, 8(6), Article 488. https://doi.org/10.3390/rs8060488

Rajbongshi, P., Das, T., & Adhikari, D. (2018). Microenvironmental heterogeneity caused by anthropogenic LULC foster lower plant assemblages in the riparian habitats of lentic systems in tropical floodplains. Science of the Total Environment, 639, 1254–1260. https://doi.org/10.1016/j.scitotenv.2018.05.249

Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012a). Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107. https://doi.org/10.1016/j.rse.2011.12.003

Rodriguez-Galiano, V., Ghimire, B., Pardo-Iguzquiza, E., Chica-Olmo, M., & Congalton, R. G. (2012b). Incorporating the downscaled Landsat TM thermal band in land-cover classification using random forest. Photogrammetric Engineering & Remote Sensing, 78(2), 129–137. https://doi.org/10.14358/PERS.78.2.129

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012c). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Rosan, T. M., Goldewijk, K. K., Ganzenmüller, R., O’Sullivan, M., Pongratz, J., Mercado, L. M., Aragao, L. O. C., Heinrich, V., Von Randow, C., & Wiltshire, A. (2021). A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environmental Research Letters, 16(7), Article 074004. https://doi.org/10.1088/1748-9326/ac08c3

Ruf, F., Salvan, M., Kouamé, J., & Duplan, T. (2020). Qui sont les planteurs de cacao de Côte d’Ivoire? Papiers de recherche (pp. 1–111). Éditions AFD. https://doi.org/10.3917/afd.thier.2020.01.0001

Ruf, F., & Varlet, F. (2017). The myth of zero deforestation cocoa in Côte d’Ivoire.

Sallustio, L., Quatrini, V., Geneletti, D., Corona, P., & Marchetti, M. (2015). Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environmental Impact Assessment Review, 54, 80–90. https://doi.org/10.1016/j.eiar.2015.05.006

Sánchez-García, E., Palomar-Vázquez, J., Pardo-Pascual, J. E., Almonacid-Caballer, J., Cabezas-Rabadán, C., & Gómez-Pujol, L. (2020). An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coastal Engineering, 160, Article 103732. https://doi.org/10.1016/j.coastaleng.2020.103732

Sanial, E., Ruf, F., Louppe, D., Mietton, M., & Hérault, B. (2023). Local farmers shape ecosystem service provisioning in West African cocoa agroforests. Agroforestry Systems, 97, 401–414. https://doi.org/10.1007/s10457-021-00723-6

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689–704. https://doi.org/10.1016/j.rse.2012.06.006

Schucknecht, A., Meroni, M., & Rembold, F. (2016). Monitoring project impact on biomass increase in the context of the Great Green Wall for the Sahara and Sahel Initiative in Senegal. European Commission Joint Research Centre, Ispra, Italy.

Schultz, M., Clevers, J. G., Carter, S., Verbesselt, J., Avitabile, V., Quang, H. V., & Herold, M. (2016). Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318–327. https://doi.org/10.1016/j.jag.2016.06.020

Selvakumaran, S., Plank, S., Geiß, C., Rossi, C., & Middleton, C. (2018). Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. International Journal of Applied Earth Observation and Geoinformation, 73, 463–470. https://doi.org/10.1016/j.jag.2018.07.004

Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41. https://doi.org/10.1016/j.apgeog.2006.09.004

Sharma, N., Cao, S., Msallem, B., Kunz, C., Brantner, P., Honigmann, P., & Thieringer, F. M. (2020). Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides – An accuracy assessment study. Journal of Clinical Medicine, 9(5), Article 1506. https://doi.org/10.3390/jcm9051506

Slama, S. B., Choubani, F., Benavente-Peces, C., & Abdelkarim, A. (2021). Innovative and Intelligent Technology-Based Services For Smart Environments-Smart Sensing and Artificial Intelligence. Proceedings of the 2nd International Conference on Smart Innovation, Ergonomics and Applied Human Factors (SEAHF’20), held online, 14–15 November 2020. CRC Press. https://doi.org/10.1201/9781003181545

Sonwa, D. J., Dieye, A., El Mzouri, E.-H., Majule, A., Mugabe, F. T., Omolo, N., Wouapi, H., Obando, J., & Brooks, N. (2017). Drivers of climate risk in African agriculture. Climate and Development, 9(5), 383–398. https://doi.org/10.1080/17565529.2016.1167659

Tano, A. M. (2012). Crise cacaoyère et stratégies des producteurs de la sous-préfecture de Méadji au Sud-Ouest ivoirien. Université Toulouse le Mirail, Toulouse 2, Français.

Tatsumi, K., Yamashiki, Y., Torres, M. A. C., & Taipe, C. L. R. (2015). Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171–179. https://doi.org/10.1016/j.compag.2015.05.001

Tesfamichael, S. G., Newete, S. W., Adam, E., & Dubula, B. (2018). Field spectroradiometer and simulated multispectral bands for discriminating invasive species from morphologically similar cohabitant plants. GIScience & Remote Sensing, 55(3), 417–436. https://doi.org/10.1080/15481603.2017.1396658

Tian, H., Banger, K., Bo, T., & Dadhwal, V. K. (2014). History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change, 121, 78–88. https://doi.org/10.1016/j.gloplacha.2014.07.005

Veci, L., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N., & Engdahl, M. (2014). The sentinel-1 toolbox. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE.

Vizzari, M., & Sigura, M. (2015). Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis. Landscape and Urban Planning, 140, 42–55. https://doi.org/10.1016/j.landurbplan.2015.04.001

Wang, Z., Han, Q., & de Vries, B. (2019). Land use/land cover and accessibility: Implications of the correlations for land use and transport planning. Applied Spatial Analysis and Policy, 12(4), 923–940. https://doi.org/10.1007/s12061-018-9278-2

Wessel, M., & Quist-Wessel, P. F. (2015). Cocoa production in West Africa, a review and analysis of recent developments. NJAS-Wageningen Journal of Life Sciences, 74, 1–7. https://doi.org/10.1016/j.njas.2015.09.001

Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G., Yadav, K., & Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 225–244. https://doi.org/10.1016/j.isprsjprs.2017.01.019