Share:


Enhancing UAS safety through building-induced dangerous zones prediction: concept and simulations

    Renata Balazova Affiliation
    ; Jiri Hlinka Affiliation
    ; Petr Gabrlik Affiliation
    ; Alessandro Santus Affiliation
    ; Simone Ferrari Affiliation

Abstract

This study presents a comprehensive approach to operational estimation of the zones of danger for the Unmanned Aerial Systems (UASs) generated at low altitudes in presence of buildings, aimed at ensuring their safer operation. The main tasks are three. The first one is the definition of an inboard measurement methodology appropriate and feasible for UAS that allows Eddy Dissipation Rate (EDR) estimation. An inboard setup with a lightweight and low-cost anemometer operating at a 1 Hz sampling rate, immediately usable on UAS, is proposed. The second one is the definition of empirical equations to estimate the size of dangerous areas for the UAS flights around buildings through numerical simulation. The third one is the validation of the empirical formulas in a real-world case, through the numerical simulation of a group of buildings belonging to a research centre. Results show a good resemblance in the size of the danger zones, highlighting that this multi-faceted approach contributes to enhanced safety protocols for UASs operating in urban environments.

Keyword : Eddy Dissipation Rate, sonic anemometer, UAS, numerical simulation, real-time data, building induced danger zones

How to Cite
Balazova, R., Hlinka, J., Gabrlik, P., Santus, A., & Ferrari, S. (2024). Enhancing UAS safety through building-induced dangerous zones prediction: concept and simulations. Aviation, 28(4), 279–291. https://doi.org/10.3846/aviation.2024.22718
Published in Issue
Dec 19, 2024
Abstract Views
40
PDF Downloads
26
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adkins, K. A. (2019). Urban flow and small unmanned aerial system operations in the built environment. International Journal of Aviation, Aeronautics, and Aerospace, 6(1). https://doi.org/10.15394/ijaaa.2019.1312

Adkins, K. A., Swinford, Ch. J., Wambolt, P. D., & Bease, G. (2020). Development of a sensor suite for atmospheric boundary layer measurement with a small multirotor unmanned aerial system. International Journal of Aviation, Aeronautics, and Aerospace, 7(1). https://doi.org/10.15394/ijaaa.2020.1433

Balážová, R., Ferrari, S., Hlinka, J., & Santus, A. (2024) Turbulence estimation by Eddy dissipation rate at low-altitudes using UAV in-situ data. Engineering Mechanics, 30, 42–45. https://doi.org/10.21495/em2024-042

Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3–4), 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5

Chiri, G. M., Achenza, M., Canì, A., Neves, L., Tendas, L., & Ferrari, S. (2020). The microclimate design process in current African development: The UEM Campus in Maputo, Mozambique. Energies, 13(9), Article 2316. https://doi.org/10.3390/en13092316

Chrit, M. (2023). Reconstructing urban wind flows for urban air mobility using reduced-order data assimilation. Theoretical and Applied Mechanics Letters, 13(4), Article 100451. https://doi.org/10.1016/j.taml.2023.100451

Chrit, M., & Majdi, M. (2022). Improving wind speed forecasting for urban air mobility using coupled simulations. Advances in Meteorology. https://doi.org/10.1155/2022/2629432

Diop, M., Dubois, P., Toubin, H., Planckaert, L., Le Roy J.-F., & Garnier, E. (2022). Reconstruction of flow around a high-rise building from wake measurements using Machine Learning techniques. Journal of Wind Engineering and Industrial Aerodynamics, 230, Article 105149. https://doi.org/10.1016/j.jweia.2022.105149

ENVI-met. (n.d.). Homepage. http://www.envi-met.com

Ezaki, T., Fujitsuka, K., Imura, N., & Nishinari, K. (2024). Drone-based vertical delivery system for high-rise buildings: Multiple drones vs. a single elevator. Communications in Transportation Research, 4, Article 100130. https://doi.org/10.1016/j.commtr.2024.100130

Fabbri, K., & Costanzo, V. (2020). Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models. Sustainable Cities and Society, 52, Article 101855. https://doi.org/10.1016/j.scs.2019.101855

Ferrari, S., Rossi, R., & Di Bernardino, A. (2022). A review of laboratory and numerical techniques to simulate turbulent flows. Energies, 15(20), Article 7580. https://doi.org/10.3390/en15207580

Frey, J., Rienecker, H., Schubert, S., Hildebrand, V., & Pfifer, H. (2024). Wind tunnel measurement of the urban wind field for flight path planning of unmanned aerial vehicles. In AIAA SciTech Forum and Exposition. Aerospace Research Central. https://doi.org/10.2514/6.2024-2510

Galway, D., Etele, J., & Fusina, G. (2011). Modeling of urban wind field effects on unmanned rotorcraft flight. Journal of Aircraft, 48(5), 1613–1620. https://doi.org/10.2514/1.C031325

Galway, D., Etele, J., & Fusina, G. (2012). Surveillance applications of unmanned aerial vehicles (UAVs) within urban areas is made difficult by turbulent winds generated by buildings. Journal of Wind Engineering and Industrial Aerodynamics, 103, 73–85. https://doi.org/10.1016/j.jweia.2012.02.010

Giersch, S., Guernaoui, O. E., Raasch, S., Sauer, M., & Palomar, M. (2022). Atmospheric flow simulation strategies to assess turbulent wind conditions for safe drone operations in urban environments. Journal of Wind Engineering and Industrial Aerodynamics, 229, Article 105136. https://doi.org/10.1016/j.jweia.2022.105136

Google. (n.d.). [AdMaS center].

International Civil Aviation Organization. (2001). Meteorological service for international air navigation (Annex 3 to the Convention on International Civil Aviation) (14th ed.). ICAO.

Kim, J., Kim, J.-H., & Sharman, R. D. (2021). Characteristics of energy dissipation rate observed from the high-frequency sonic anemometer at Boseong, South Korea. Atmosphere, 12(7), Article 837. https://doi.org/10.3390/atmos12070837

Kristiansson, M., Andersson Hagiwara, M., Svensson, L., Schierbeck, S., Nord, A., Hollenberg, J., Ringh, M., Nordberg, P., Andersson Segerfelt, P., Jonsson, M., Olsson, J., & Claesson, A. (2024). Drones can be used to provide dispatch centres with on-site photos before arrival of EMS in time critical incidents. Resuscitation, 202, Article 110312. https://doi.org/10.1016/j.resuscitation.2024.110312

Mellor, G. L., & Yamada, T. (1975). A simulation of the Wangara atmospheric boundary layer data. Journal of the Atmospheric Sciences, 32(12), 2309–2329. 2.0.CO;2> https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2

Mohamed, A., Marino, M., Watkins, S., Jaworski, J., & Jones, A. (2023). Gusts encountered by flying vehicles in proximity to buildings. Drones, 7(1), Article 22. https://doi.org/10.3390/drones7010022

Palomaki, R. T., Rose, N. T., van den Bossche, M., Sherman, T. J., & De Wekker, S. F. J. (2017). Wind estimation in the lower atmosphere using multirotor aircraft. Journal of Atmospheric and Oceanic Technology, 34, 1183–1191. https://doi.org/10.1175/JTECH-D-16-0177.1

Patrikar, J., Moon, B. G., & Scherer, S. (2020). Wind and the city: Utilizing UAV-based in-situ measurements for estimating urban wind fields. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS45743.2020.9340812

Pensado, E. A., Carrera, G. F., López, F. V., Jorge, H. G., & Ortega, E. M. (2024). Turbulence-aware UAV path planning in urban environments. In 2024 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 280–285). IEEE. https://doi.org/10.1109/ICUAS60882.2024.10556934

Simon, H., Heusinger, J., Sinsel, T., Weber, S., & Bruse, M. (2021). Implementation of a Lagrangian stochastic particle trajectory model (LaStTraM) to simulate concentration and flux footprints using the microclimate model ENVI‐Met. Atmosphere, 12(8), Article 977. https://doi.org/10.3390/atmos12080977

Szucs, A. (2013). Wind comfort in a public urban space – case study within Dublin Docklands. Frontiers of Architectural Research, 2(1), 50–66. https://doi.org/10.1016/j.foar.2012.12.002

Wang, Y. Z. D., & Lv, L. (2019). Comparative study of urban residential design and microclimate characteristics based on ENVI-met simulation. Indoor and Built Environment, 28(9), 1200–1216. https://doi.org/10.1177/1420326X19860884

Yuan, W., Zhang, X., Poirel, D., & Wall, A. (2024). Numerical modelling of aerodynamic response to gusts and gust effect mitigation. Aerospace Science and Technology, 154, Article 109467. https://doi.org/10.1016/j.ast.2024.109467